🔧 Building a Data Lakehouse for Analyzing Elon Musk Tweets using MinIO, Apache Airflow, Apache Drill and Apache Superset
Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to
Every act of conscious learning requires the willingness to suffer an injury to one's self-esteem. That is why young children, before they are aware of their own self-importance, learn so easily.
Thomas Szasz
Motivation
A Data Lakehouse is a modern data architecture that combines the scalability and flexibility of a data lake with the governance and performance of a data warehouse. This approach allows organizations to store and analyze large amounts of structured and unstructured data in a single platform, enabling more efficient and effective data-driven decision making.
To deep dive in this, we will build a Data lakehouse solution for analyzing tweets from Elon Musk using MinIO as storage, Apache Drill as query engine, Apache Superset for visualization and Apache Airflow for orchestration. This article will take you through the process of building and utilizing this solution to gain insights and make data-driven decisions.
Then, we’ll use Docker-Compose to easily deploy our solution.
Architecture
Table of Content
- What is Apache Airflow?
- What is MinIO ?
- What is Apache Drill ?
- What is Apache Superset ?
- Code
- get_twitter_data()
- clean_twitter_data()
- write_to_bucket()
- DAG (Direct Acyclic Graph)
- Apache Drill Configuration
- Apache Superset Configuration
- docker-compose & .env files
- Result
What is Apache Airflow
Airflow is a platform created by the community to programmatically author, schedule and monitor workflows.
Apache Airflow is an opensource workflow orchestration written in Python. It uses DAG (Direct Acyclic Graphs) to represent workflows. It is highly customizable/flexible and have a quite active community.
💡 You can read more here.
What is MinIO
MinIO offers high-performance, S3 compatible object storage.
MinIO is an opensource Multi-cloud Object Storage and fully compatible with AWS s3. With MinIO you can host your own on-premises or cloud Object storage.
💡 You ca read more here.
What is Apache Drill
Schema-free SQL Query Engine for Hadoop, NoSQL and Cloud Storage.
MinIO is an opensource Multi-cloud Object Storage and fully compatible with AWS s3. With MinIO you can host your own on-premises or cloud Object storage.
💡 You ca read more here.
What is Apache Superset
Apache Superset is a modern data exploration and visualization platform.
Superset is fast, lightweight, intuitive, and loaded with options that make it easy for users of all skill sets to explore and visualize their data, from simple line charts to highly detailed geospatial charts.
💡 You ca read more here.
Code
The full code can be accessed here:
Source code:
https://github.com/mikekenneth/twitter_data-lakehouse_minio_drill_superset
get_twitter_data()
Below is the python Task that pulls Elon’s tweets from Twitter API into a Python list:
import os
import json
import requests
from airflow.decorators import dag, task
@task
def get_twitter_data():
TWITTER_BEARER_TOKEN = os.getenv("TWITTER_BEARER_TOKEN")
# Get tweets using Twitter API v2 & Bearer Token
BASE_URL = "https://api.twitter.com/2/tweets/search/recent"
USERNAME = "elonmusk"
FIELDS = {"created_at", "lang", "attachments", "public_metrics", "text", "author_id"}
url = f"{BASE_URL}?query=from:{USERNAME}&tweet.fields={','.join(FIELDS)}&expansions=author_id&max_results=50"
response = requests.get(url=url, headers={"Authorization": f"Bearer {TWITTER_BEARER_TOKEN}"})
response = json.loads(response.content)
print(response)
data = response["data"]
includes = response["includes"]
return data, includes
clean_twitter_data()
Below is the python Task that cleans & transform the tweets in the right format:
from uuid import uuid4
from datetime import datetime
from airflow.decorators import dag, task
@task
def clean_twitter_data(tweets_data):
data, includes = tweets_data
batchId = str(uuid4()).replace("-", "")
batchDatetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Refine tweets data
tweet_list = []
for tweet in data:
refined_tweet = {
"tweet_id": tweet["id"],
"username": includes["users"][0]["username"], # Get username from the included data
"user_id": tweet["author_id"],
"text": tweet["text"],
"like_count": tweet["public_metrics"]["like_count"],
"retweet_count": tweet["public_metrics"]["retweet_count"],
"created_at": tweet["created_at"],
"batchID": batchId,
"batchDatetime": batchDatetime,
}
tweet_list.append(refined_tweet)
return tweet_list, batchDatetime, batchId
dump_data_to_bucket()
Below is the python task transforms the tweets list into a Pandas Dataframe, then writes it in our MinIO Object Storage as a Parquet file.
import os
from airflow.decorators import dag, task
@task
def write_to_bucket(data):
tweet_list, batchDatetime_str, batchId = data
batchDatetime = datetime.strptime(batchDatetime_str, "%Y-%m-%d %H:%M:%S")
import pandas as pd
from minio import Minio
from io import BytesIO
MINIO_BUCKET_NAME = os.getenv("MINIO_BUCKET_NAME")
MINIO_ROOT_USER = os.getenv("MINIO_ROOT_USER")
MINIO_ROOT_PASSWORD = os.getenv("MINIO_ROOT_PASSWORD")
df = pd.DataFrame(tweet_list)
file_data = df.to_parquet(index=False)
client = Minio("minio:9000", access_key=MINIO_ROOT_USER, secret_key=MINIO_ROOT_PASSWORD, secure=False)
# Make MINIO_BUCKET_NAME if not exist.
found = client.bucket_exists(MINIO_BUCKET_NAME)
if not found:
client.make_bucket(MINIO_BUCKET_NAME)
else:
print(f"Bucket '{MINIO_BUCKET_NAME}' already exists!")
# Put parquet data in the bucket
filename = (
f"tweets/{batchDatetime.strftime('%Y/%m/%d')}/elon_tweets_{batchDatetime.strftime('%H%M%S')}_{batchId}.parquet"
)
client.put_object(
MINIO_BUCKET_NAME, filename, data=BytesIO(file_data), length=len(file_data), content_type="application/csv"
)
DAG (Direct Acyclic Graph)
Below is the DAG itself that allows specifying the dependencies between tasks:
from datetime import datetime
from airflow.decorators import dag, task
@dag(
schedule="0 * * * *",
start_date=datetime(2023, 1, 10),
catchup=False,
tags=["twitter", "etl"],
)
def twitter_etl():
raw_data = get_twitter_data()
cleaned_data = clean_twitter_data(raw_data)
write_to_bucket(cleaned_data)
twitter_etl()
Apache Drill Configuration
-
To grant Apache Drill access to our MinIO (s3) bucket, we need to defining Access Keys in the Drill
core-site.xml
file:<?xml version="1.0" encoding="UTF-8" ?> <configuration> <property> <name>fs.s3a.access.key</name> <value>minioadmin</value> </property> <property> <name>fs.s3a.secret.key</name> <value>minioadmin</value> </property> <property> <name>fs.s3a.endpoint</name> <value>http://minio:9000</value> </property> <property> <name>fs.s3a.connection.ssl.enabled</name> <value>false</value> </property> <property> <name>fs.s3a.path.style.access</name> <value>true</value> </property> </configuration>
-
Next, we’ll configure the S3 Storage Plugin to specify the buckets to be access by Apache Drill in the
storage-plugins-override.conf
file:"storage": { s3: { type: "file", connection: "s3a://twitter-data", workspaces: { "root": { "location": "/", "writable": false, "defaultInputFormat": null, "allowAccessOutsideWorkspace": false } }, formats: { "parquet": { "type": "parquet" }, "csv" : { "type" : "text", "extensions" : [ "csv" ] } }, enabled: true } }
💡 You can read more here.
Apache Superset Configuration
To be able to query Apache-Drill, we need to build a custom image of apache/superset
using superset_drill.Dockerfile
:
FROM apache/superset
# Switching to root to install the required packages
USER root
# install requirements for Apache Drill
RUN pip install sqlalchemy-drill
# Switching back to using the `superset` user
USER superset
💡 You can read more here.
docker-compose & .env files
Below is the .env
file that we need to create that hold the environmental variables needed to run our pipeline:
💡 You can read this to learn our to generate the TWITTER_BEARER_TOKEN
.
# Twitter
TWITTER_BEARER_TOKEN="TOKEN"
# Minio
MINIO_ROOT_USER=minioadmin
MINIO_ROOT_PASSWORD=minioadmin
MINIO_BUCKET_NAME='twitter-data'
# Superset
SUPERSET_USERNAME=admin
SUPERSET_PASSWORD=admin
# Apache Airflow
## Meta-Database
POSTGRES_USER=airflow
POSTGRES_PASSWORD=airflow
POSTGRES_DB=airflow
## Airflow Core
AIRFLOW__CORE__FERNET_KEY=''
AIRFLOW__CORE__EXECUTOR=LocalExecutor
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION=True
AIRFLOW__CORE__LOAD_EXAMPLES=False
AIRFLOW_UID=50000
AIRFLOW_GID=0
## Backend DB
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN=postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__DATABASE__LOAD_DEFAULT_CONNECTIONS=False
## Airflow Init
_AIRFLOW_DB_UPGRADE=True
_AIRFLOW_WWW_USER_CREATE=True
_AIRFLOW_WWW_USER_USERNAME=airflow
_AIRFLOW_WWW_USER_PASSWORD=airflow
_PIP_ADDITIONAL_REQUIREMENTS= "minio pandas requests"
And below is the docker-compose.yaml
file that allow to spin up the needed infrastructure for our pipeline:
version: '3.4'
x-common:
&common
image: apache/airflow:2.5.0
user: "${AIRFLOW_UID}:0"
env_file:
- .env
volumes:
- ./app/dags:/opt/airflow/dags
- ./app/logs:/opt/airflow/logs
x-depends-on:
&depends-on
depends_on:
postgres:
condition: service_healthy
airflow-init:
condition: service_completed_successfully
services:
minio:
image: minio/minio:latest
ports:
- '9000:9000'
- '9090:9090'
volumes:
- './data:/data'
env_file:
- .env
command: server --console-address ":9090" /data
healthcheck:
test:
[
"CMD",
"curl",
"-f",
"http://localhost:9000/minio/health/live"
]
interval: 30s
timeout: 20s
retries: 3
drill:
env_file:
- .env
image: apache/drill:latest
ports:
- '8047:8047'
- '31010:31010'
volumes:
# If needed, override default settings
- ./conf/drill/core-site.xml:/opt/drill/conf/core-site.xml
# Register default storage plugins
- ./conf/drill/storage-plugins-override.conf:/opt/drill/conf/storage-plugins-override.conf
stdin_open: true
tty: true
superset_drill:
env_file:
- .env
ports:
- '8088:8088'
build:
context: .
dockerfile: superset_drill.Dockerfile
volumes:
- ./superset.db:/app/superset_home/superset.db
postgres:
image: postgres:13
container_name: postgres
ports:
- "5433:5432"
healthcheck:
test: [ "CMD", "pg_isready", "-U", "airflow" ]
interval: 5s
retries: 5
env_file:
- .env
scheduler:
<<: *common
<<: *depends-on
container_name: airflow-scheduler
command: scheduler
restart: on-failure
ports:
- "8793:8793"
webserver:
<<: *common
<<: *depends-on
container_name: airflow-webserver
restart: always
command: webserver
ports:
- "8080:8080"
healthcheck:
test:
[
"CMD",
"curl",
"--fail",
"http://localhost:8080/health"
]
interval: 30s
timeout: 30s
retries: 5
airflow-init:
<<: *common
container_name: airflow-init
entrypoint: /bin/bash
command:
- -c
- |
mkdir -p /sources/logs /sources/dags
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags}
exec /entrypoint airflow version
Result
-
When we access the Apache-Airflow Web UI, we can see the DAG and we can run it directly to see the results.
DAG (Apache-Airflow web UI): -
Tweets Parquet file generated in our bucket (MinIO Console):
-
If needed, we can query our Data-Lakehouse directly using Apache-Drill Web Interface:
-
Finally, we can visualize our Dashboard (I built this already, but it can be easily modified and the data is stored in the
superset.db
file):
This is a wrap. I hope this helps you.
About Me
I am a Data Engineer with 3+ years of experience and more years as a Software Engineer (5+ years). I enjoy learning and teaching (mostly learning 😎).
You can get in touch with me through Twitter & LinkedIn or [email protected].
...