Cookie Consent by Free Privacy Policy Generator ๐Ÿ“Œ Your LLM hallucinates, Why?

๐Ÿ  Team IT Security News

TSecurity.de ist eine Online-Plattform, die sich auf die Bereitstellung von Informationen,alle 15 Minuten neuste Nachrichten, Bildungsressourcen und Dienstleistungen rund um das Thema IT-Sicherheit spezialisiert hat.
Ob es sich um aktuelle Nachrichten, Fachartikel, Blogbeitrรคge, Webinare, Tutorials, oder Tipps & Tricks handelt, TSecurity.de bietet seinen Nutzern einen umfassenden รœberblick รผber die wichtigsten Aspekte der IT-Sicherheit in einer sich stรคndig verรคndernden digitalen Welt.

16.12.2023 - TIP: Wer den Cookie Consent Banner akzeptiert, kann z.B. von Englisch nach Deutsch รผbersetzen, erst Englisch auswรคhlen dann wieder Deutsch!

Google Android Playstore Download Button fรผr Team IT Security



๐Ÿ“š Your LLM hallucinates, Why?


๐Ÿ’ก Newskategorie: Programmierung
๐Ÿ”— Quelle: dev.to

It is a fact that large language models (LLMs) have really made life easier for the whole world, and there has really been a huge adoption of AI in all areas of life. But as much as this new trend is interesting and helpful, it also has its limitations.

One of the limitations of LLM is "hallucination", others include:ย 

  1. Contextual understanding
  2. Domain-Specific Knowledge
  3. Lack of Common Sense Reasoning
  4. Continual learning constraints.

What does it really mean for an LLM to hallucinate?

Hallucination refers to instances where the model generates information or outputs that are factually incorrect, nonsensical, or not grounded in the provided context.

We can also say:

A hallucination occurs when the model generates text or responses that seem plausible on the surface but lack factual accuracy or logical consistency.

Model hallucination

Things to consider if your model is hallucinating:

Tokenย Limit

The token limit is the maximum number of tokens or words, that the model can process in a single sequence. Tokens can include words, subwords, or characters, each represented as a unit in the model's input.

This limit is imposed due to computational constraints and memory limitations within the model architecture. It affects both the input and output of the model. When the input text exceeds this limit, the model cannot process the entire sequence at once, potentially leading to truncation, where only a portion of the input is considered. Similarly, for text generation tasks, the output length is also capped by this token limit.

The token window limit is how many words an LLM can absorb while generating an answer. Your LLM (e.g. ChatGPT) is a spongeโ€Š-โ€Šwhat does this mean?ย 

Too much much water (words) = no more absorption.

  • GPT-3 has a limit of 2048 tokens.
  • GPT-4 has a token limit of 128,000 tokens.

For instance, if an LLM has a token limit of 2048 tokens, any input longer than that would need to be split into smaller segments for processing, potentially affecting the context and coherence of the information being processed.

This token limit poses challenges when dealing with lengthy texts, complex documents, or tasks that require processing a large amount of information in a single sequence and this can lead to model hallucinations.

Token isn't everything

Claude 2.1 now has a 200,000 token limit and you might think it must be the best LLM yet. Well, not really. An academic paper shows the opposite, they tested Cluade 2.1 and GPT-4. They performed a "needle in a haystack" scenario and both LLM had to find the information. The longer the text, the harder. Makes sense?

The study also shows other factors:

  • How attentive to details the LLM is.
  • It's ability to discern relevance.

So bigger does not necessarily mean better, it challenges the notion that a larger token limit in LLMs = better performance.

The data trainingย bias

What you feed the LLM = the quality of the LLM, so this means that the quality of the training matters. When the training data is bad, there can be a biased data reflection, potentially perpetuating or amplifying societal biases.

Wrap up

Recognizing these limitations helps in using LLMs effectively while considering their strengths and weaknesses. Addressing and minimizing hallucination in LLMs involves ongoing research and development to enhance the model's contextual understanding, improve fact-checking capabilities, and refine its ability to generate accurate and contextually appropriate responses.

...



๐Ÿ“Œ Your LLM hallucinates, Why?


๐Ÿ“ˆ 59.24 Punkte

๐Ÿ“Œ ChatGPT Subs In as Security Analyst, Hallucinates Only Occasionally


๐Ÿ“ˆ 35.15 Punkte

๐Ÿ“Œ Fine-tuning an LLM model with H2O LLM Studio to generate Cypher statements


๐Ÿ“ˆ 29.81 Punkte

๐Ÿ“Œ Reframing LLM โ€˜Chat with Dataโ€™: Introducing LLM-Assisted Data Recipes


๐Ÿ“ˆ 29.81 Punkte

๐Ÿ“Œ Microsoft and Columbia Researchers Propose LLM-AUGMENTER: An AI System that Augments a Black-Box LLM with a Set of Plug-and-Play Modules


๐Ÿ“ˆ 29.81 Punkte

๐Ÿ“Œ Microsoft Research Propose LLMA: An LLM Accelerator To Losslessly Speed Up Large Language Model (LLM) Inference With References


๐Ÿ“ˆ 29.81 Punkte

๐Ÿ“Œ Microsoft Researchers Propose Low-Code LLM: A Novel Human-LLM Interaction Pattern


๐Ÿ“ˆ 29.81 Punkte

๐Ÿ“Œ Why OpenAI Assistants is a Big Win for LLM Evaluation


๐Ÿ“ˆ 20.57 Punkte

๐Ÿ“Œ How to Measure the Success of Your RAG-based LLM System


๐Ÿ“ˆ 18.43 Punkte

๐Ÿ“Œ How to run a ChatGPT-like LLM on your own Machine


๐Ÿ“ˆ 18.43 Punkte

๐Ÿ“Œ How to Use Large Language Models (LLM) in Your Own Domains


๐Ÿ“ˆ 18.43 Punkte

๐Ÿ“Œ Teach Your LLM to Always Answer With Facts Not Fiction


๐Ÿ“ˆ 18.43 Punkte

๐Ÿ“Œ Teach Your LLM to Always Answer With Facts Not Fiction


๐Ÿ“ˆ 18.43 Punkte

๐Ÿ“Œ How to Chat with Any Open Source LLM for Free with Your iPhone


๐Ÿ“ˆ 18.43 Punkte

๐Ÿ“Œ Meet LLM AutoEval: An AI Platform that Automatically Evaluates Your LLMs in Google Colab


๐Ÿ“ˆ 18.43 Punkte

๐Ÿ“Œ Optimizing TF, XLA and JAX for LLM Training on NVIDIA GPUs


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Scaling Large Language Model (LLM) training with Amazon EC2 Trn1 UltraClusters


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Web-LLM: Chatbot und Sprachmodell kรถnnen lokal im Browser laufen


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ LLM-Battle: Sprachmodelle sind das neue Cloud-Schlachtfeld


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Building a production ready LLM application with BerriAI, PropelAuth, and Next.js


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Leitplanken bringen Trust und Security in LLM-basierte Konversationssysteme


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ LLM Economics: ChatGPT vs Open-Source


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ HackerOne and the OWASP Top 10 for LLM: A Powerful Alliance for Secure AI


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Learn how Amazon Pharmacy created their LLM-based chat-bot using Amazon SageMaker


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Synergy of LLM and GUI, Beyond the Chatbot


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Apples KI-Strategie: Siri mit LLM, Pages & Co. mit generativen Inhalten?


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Apples KI-Strategie: Siri mit LLM, Pages & Co. mit generativen Inhalten?


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Understanding and Mitigating LLM Hallucinations


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Looking inside ROScribe and the idea of LLM-based robotic platform


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ LLM for Synthetic Time Series Data Generation


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Understanding the Difference Between GPT and LLM: Deciphering AI Language Models


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ Steady the Course: Navigating the Evaluation of LLM-based Applications


๐Ÿ“ˆ 14.91 Punkte

๐Ÿ“Œ How to Evaluate LLM Applications


๐Ÿ“ˆ 14.91 Punkte











matomo