🔧 ChatGPT clone with React Suspense and Streaming
Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to
This is a short blog to showcase a solution I developed to create ChatGPT style interfaces.
Server Side
Let's start by creating a simple server that our client will use to communicate with OpenAI.
First, we initialize the openai
client with our API key:
import OpenAI from "openai";
const openai = new OpenAI(process.env.OPENAI_API_KEY);
Then we create a map to store chat sessions:
const sessions = new Map<string, OpenAI.ChatCompletionMessageParam[]>();
Now we define a request handler that will forward messages to OpenAI and stream the response down the wire:
import express from "express";
import bodyParser from "body-parser";
const app = express();
// Parse body as JSON when Content-Type: application/json
app.use(bodyParser.json());
app.post("/chat", async (req, res) => {
// 1. Validate input
// 2. Create session if it doesn't exist
// 3. Add user message to session
// 4. Fetch response from OpenAI
// 5. Stream response to client
// 6. Add OpenAI response to session
});
app.listen(3000, () => {
console.log("Listening on port 3000");
});
Let's start by validating the input.
We expect to receive a session ID and a prompt from the client.
// 1. Validate input
const prompt = req.body.prompt;
const sessionId = req.body.sessionId;
// Validate input
if (typeof prompt !== "string" || prompt.length === 0) {
res.status(400).send("prompt is required");
return;
}
if (typeof sessionId !== "string" || sessionId.length === 0) {
res.status(400).send("sessionId is required");
return;
}
Then, if session doesn't exist, we create it and add the user message to it.
// 2. Create session if it doesn't exist
if (sessions.has(sessionId) === false) {
sessions.set(sessionId, []);
}
const messages = sessions.get(sessionId);
// 3. Add user message to session
messages.push({
role: "user",
content: prompt,
});
Now we can fetch the response from OpenAI using the stream
option.
// 4. Fetch response from OpenAI
const stream = await openai.chat.completions.create({
messages,
stream: true,
model: "gpt-4",
});
The stream
object is an async iterable, so we can use a for await
loop to iterate over the incoming chunks. To stream the chunks to the client we simply write to the response object with res.write
. Once the stream is finished, we call res.end
to close the connection.
// 5. Stream response to client
let response = "";
for await (const chunk of stream) {
const token = chunk.choices?.[0]?.delta?.content ?? "";
res.write(token);
response += token;
}
res.end();
Finally, we add the OpenAI response to the session.
// 6. Add OpenAI response to session
messages.push({
role: "assistant",
content: response,
});
Client Side
Let's now focus on the client side. We will use some React APIs that are currently available in the canary release of React 18. Let's start by preparing our environment.
Update you react version to the latest canary release:
npm update react@canary react-dom@canary
# yarn upgrade react@canary react-dom@canary
# pnpm update react@canary react-dom@canary
Then, reference the canary react types in your tsconfig.json
:
{
"compilerOptions": {
"types": ["react/canary"]
}
}
If you prefer to use a declaration file you can use a triple-slash directive instead:
/// <reference types="react/canary" />
Now we can start building our app. Let's start by creating a simple form to send messages to the server.
The component will accept a callback to send messages to the server and a boolean to indicate if the server is currently processing a message.
import { useState, useCallback } from "react";
import type { FormEventHandler, ChangeEventHandler } from "react";
export type ChatFormProps = {
onSendMessage: (message: string) => void;
isSending: boolean;
};
export function ChatForm({ onSending, isSending }: ChatFormProps) {
const [input, setInput] = useState("");
const handleSubmit = useCallback<FormEventHandler<HTMLFormElement>>(
(e) => {
e.preventDefault();
if (input === "") return;
onSendMessage(input);
setInput("");
},
[input, onSendMessage],
);
const handleInputChange = useCallback<ChangeEventHandler<HTMLInputElement>>(
(e) => {
setInput(e.target.value);
},
[],
);
return (
<form onSubmit={handleSubmit}>
<input
value={input}
onChange={handleInputChange}
placeholder="Ask a question"
required
/>
<button disabled={isSending}>{isSending ? "Sending..." : "Send"}</button>
</form>
);
}
Now, we create a parent component that will handle the communication with the server.
import { useState, useCallback } from "react";
import { ChatForm, type ChatFormProps } from "./ChatForm";
export type Message = {
role: "user" | "assistant";
content: string;
}
export function ChatApp() {
const [messages, setMessages] = useState<Message[]>([]);
const [isSending, setIsSending] = useState(false);
const handleSendMessage = useCallback<ChatFormProps["onSendMessage"]>(
async (message) => {
// We will implement this later
}, []
)
return (
<div>
<ChatForm onSendMessage={handleSendMessage} isSending={isSending} />
</div>
)
}
Before implementing the send message logic, let's define how we want to display the messages.
Let's create a presentational component that renders a single message.
import type { Message } from "./ChatApp";
export type ChatMessageProps = {
message: Message;
};
export function ChatMessage({ message }: ChatMessageProps) {
return (
<p>
<span>From {message.role}:</span>
<span>{message.content}</span>
</p>
)
}
Now let's define a component that will render a list of messages.
export type ChatLogProps = {
messages: Message[];
};
export function ChatLog({ messages }: ChatLogProps) {
return (
<div role="log">
{messages.map((message, i) => (
<ChatMessage key={i} message={message} />
))}
</div>
);
}
Finally we can use the ChatLog
component in our ChatApp
component.
// ...
import { ChatLog } from "./ChatLog";
export function ChatApp() {
// ...
return (
<div>
<ChatLog messages={messages} />
<ChatForm onSendMessage={handleSendMessage} isSending={isSending} />
</div>
)
}
Now it's time for the fun part. With Suspense we can easily render messages regardless of whether they are coming from the server or from the user. Let's define a MessageRenderer component that receives a message or a promise that resolves to a message.
import { use } from "react";
import { ChatMessage } from "./ChatMessage";
export type MessageRendererProps = {
message: Message | Promise<Message>;
};
export function MessageRenderer(props: MessageRendererProps) {
// Use will activate the suspense boundary when message is a promise
const message =
props.message instanceof Promise
? use(props.message)
: props.message;
return <ChatMessage message={message} />;
}
In the history component we can now use the MessageRenderer
component to render messages.
import { Suspense } from "react";
import { MessageRenderer, type MessageRendererProps } from "./MessageRenderer";
export type ChatLogProps = {
// Now both messages and promises are accepted
messages: MessageRendererProps["message"][];
};
export function ChatLog({ messages }: ChatLogProps) {
return (
<div role="log">
{messages.map((message, i) => (
<Suspense key={i} fallback="Loading...">
<MessageRenderer message={message} />
</Suspense>
))}
</div>
);
}
While the message is loading, Suspense will render the fallback component. Once the promise resolves, the message will be rendered instead. To handle errors we need to wrap the Suspense
element in an ErrorBoundary
component.
I recommend using the react-error-boundary
package for this.
npm install react-error-boundary
# yarn add react-error-boundary
# pnpm add react-error-boundary
We can render a fallback UI when an error occurs:
import { ErrorBoundary } from "react-error-boundary";
<ErrorBoundary fallback={<p>Error</p>}>
<Suspense fallback="Loading...">
<MessageRenderer message={message} />
</Suspense>
</ErrorBoundary>
Let's create dedicated components to render the loading and error states.
Since we want to Stream the response coming from the server, the suspense fallback it's going to be called StreamingMessage
:
export type MessageStream = ReadableStream<Uint8Array>
export type StreamingMessageProps = {
stream: MessageStream;
};
export function StreamingMessage({ stream }: StreamingMessageProps) {
const [content, setContent] = useState("");
useEffect(() => {
if (stream.locked) return;
readMessageStream(stream, (token) => {
setContent((prev) => prev + token);
});
}, [stream]);
const message = {
from: "assistant",
content,
};
return (
<MessageRenderer message={message} />
);
}
export async function readMessageStream(
stream: ReadableStream,
onNewToken: (token: string) => void = () => {},
) {
const reader = stream.getReader();
const decoder = new TextDecoder();
const chunks: string[] = [];
// eslint-disable-next-line no-constant-condition
while (true) {
const { done, value } = await reader.read();
if (done) break;
if (value) {
const chunk = decoder.decode(value);
chunks.push(chunk);
onNewToken(chunk);
}
}
const text = chunks.join("");
return text;
}
Now we can use the StreamingMessage
component in our ChatLog
component:
import { StreamingMessage, type MessageStream } from "./StreamingMessage";
export type ChatLogProps = {
messages: MessageOrPromise[];
stream?: MessageStream;
};
// ...
<ErrorBoundary fallback={<p>Error</p>}>
<Suspense fallback={<StreamingMessage stream={stream} />}>
<MessageRenderer message={message} />
</Suspense>
</ErrorBoundary>
Now we can extend our ChatApp
component to track the message stream and pass it to the ChatLog
component.
// ...
import { ChatLog, type ChatLogProps } from "./ChatLog";
import { ChatForm, type ChatFormProps } from "./ChatForm";
export function ChatApp() {
const [messages, setMessages] = useState<ChatLogProps["messages"]>([]);
const [isSending, setIsSending] = useState<ChatFormProps["isSending"]>(false);
const [stream, setStream] = useState<ChatLogProps["stream"]>();
const handleSendMessage = useCallback<ChatFormProps["onSendMessage"]>(
async (message) => {
// We will implement this later
}, []
)
return (
<div>
<ChatLog messages={messages} stream={stream} />
<ChatForm onSendMessage={handleSendMessage} isSending={isSending} />
</div>
);
}
Finally, here is the complete implementation of the handleSendMessage
function:
const handleSendMessage = useCallback(
(input: string) => {
const userMessage: Message = {
from: "user",
content: input,
}
const assistantMessage = fetchMessageStream(input, sessionId)
.then((stream) => {
const [stream1, stream2] = stream.tee();
setStream(stream1); // read by ChatLog
return readMessageStream(stream2);
})
.then((text): Message => {
return {
from: "assistant",
content: text,
}
});
setIsSending(true);
// Update messages state
setMessages((prevMessages) => [
...prevMessages,
userMessage,
assistantMessage,
]);
},
[sessionId],
);
function fetchMessageStream(prompt: string, sessionId: string) {
const response = fetch("/chat", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
prompt,
sessionId,
}),
});
if (!response.ok) {
throw new Error("Failed to fetch message stream");
}
return response.body satisfies ChatLogProps["stream"];
}
🔧 What is React Suspense and Async Rendering?
📈 32.43 Punkte
🔧 Programmierung
🔧 Introduction to React Suspense
📈 30.76 Punkte
🔧 Programmierung
🔧 TLDR; Suspense in react-query
📈 30.76 Punkte
🔧 Programmierung
🔧 Async React with Suspense
📈 30.76 Punkte
🔧 Programmierung
🔧 React Suspense for data fetching
📈 30.76 Punkte
🔧 Programmierung
📰 The Best Suspense Movies on Netflix
📈 23.71 Punkte
🖥️ Betriebssysteme
🔧 Understanding Suspense with Next 13
📈 23.71 Punkte
🔧 Programmierung
🔧 New Suspense Hooks for Meteor
📈 23.71 Punkte
🔧 Programmierung
🔧 Loading.... Suspense
📈 23.71 Punkte
🔧 Programmierung
🔧 How to used Suspense?
📈 23.71 Punkte
🔧 Programmierung
🐧 Git Shallow Clone and Clone Depth
📈 23.67 Punkte
🐧 Linux Tipps