Cookie Consent by Free Privacy Policy Generator ๐Ÿ“Œ How you can create your own custom chatbot with your own custom data using Google Gemini API all for free

๐Ÿ  Team IT Security News

TSecurity.de ist eine Online-Plattform, die sich auf die Bereitstellung von Informationen,alle 15 Minuten neuste Nachrichten, Bildungsressourcen und Dienstleistungen rund um das Thema IT-Sicherheit spezialisiert hat.
Ob es sich um aktuelle Nachrichten, Fachartikel, Blogbeitrรคge, Webinare, Tutorials, oder Tipps & Tricks handelt, TSecurity.de bietet seinen Nutzern einen umfassenden รœberblick รผber die wichtigsten Aspekte der IT-Sicherheit in einer sich stรคndig verรคndernden digitalen Welt.

16.12.2023 - TIP: Wer den Cookie Consent Banner akzeptiert, kann z.B. von Englisch nach Deutsch รผbersetzen, erst Englisch auswรคhlen dann wieder Deutsch!

Google Android Playstore Download Button fรผr Team IT Security



๐Ÿ“š How you can create your own custom chatbot with your own custom data using Google Gemini API all for free


๐Ÿ’ก Newskategorie: Programmierung
๐Ÿ”— Quelle: dev.to

INTRODUCTION

Up until now, the conventional method for building multimodal models involves learning independent parts for various modalities and then piecing them together to approximate some of this functionality. Certain activities, like describing visuals, may be areas in which these models excel, but they have trouble with more conceptual and sophisticated reasoning.

As to this moment, Google's most adaptable model to date, Gemini can operate well on a wide range of platforms, including mobile phones and data centers. Its cutting-edge features will greatly improve how developers and business clients use AI to create and grow.

Google have optimized Gemini 1.0, their first version, for three different sizes:

  1. Gemini Ultra, the largest and most capable model for highly complex tasks.
  2. Gemini Pro, the best model for scaling across a wide range of tasks.
  3. Gemini Nano, the most efficient model for on-device tasks.

This makes Gemini one of the most capable models in the world and thus creating an opportunity for people to explore it in many ways. With respect to that google have also released a huge free tier that could really be helpful to help people to create some cool stuff.

In this article, you are going to learn how to create your own custom chatbot using your own data using the Google Gemini API free tier.

IMPLEMENTATION

Step 01: Getting your API Key

To get started you first need to create an API key that would be used to reference the model, to create your API key you need to signup and create a new key at the Google AI Studio at Google Maker suite platform.

Step 02: Installing Libraries

To build a chatbot, we need to use some Python libraries that are specifically designed for natural language processing and machine learning. These would help to facilitate the implementation of the chatbot.

pip install -q llama_index google-generativeai chromadb pypdf transformers chromadb

Step 03: Importing Libraries

To begin, we need to import the necessary libraries and modules that will be used throughout the chatbot creation process. The code snippet below demonstrates the required imports.


from llama_index import SimpleDirectoryReader, VectorStoreIndex
from llama_index.llms import Gemini
from IPython.display import Markdown, display
from llama_index import ServiceContext
from llama_index.vector_stores import ChromaVectorStore
from llama_index.storage.storage_context import StorageContext
from llama_index.prompts import PromptTemplate
import chromadb
import os

Step 04: Loading data from the knowledge base

To make the chatbot knowledgeable about your anything, you need to load your desired documents into the chatbot's index. The documents can be in different formats, in this demo all the documents were in pdf. The code snippet below demonstrates loading the data from a specified directory.

documents = SimpleDirectoryReader("./data").load_data()

Step 05: Innitializing the data embedding database

ChromaDB, a versatile tool for storing vector representations and embeddings, serves as the backbone of our system. Initializing ChromaDB involves creating a client and establishing a collection for storing document embeddings. This sets the stage for efficient storage and retrieval of vector representations.


db = chromadb.PersistentClient(path="./embeddings/chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")

Step 06: Innitializing the model

Initializing Gemini and creating a service context involves setting up the necessary environment and defining how the model is going to interact and process both user inputs and data source.


os.environ['GOOGLE_API_KEY'] = 'PUT YOUR GOOGLE API KEY HERE'
llm = Gemini()
service_context = ServiceContext.from_defaults(llm=llm, chunk_size=800, chunk_overlap=20, embed_model="local")

Step 7: Creating Vector Store Index

With the foundational components in place, the next step is to create the vector store index from the loaded documents. This process involves indexing the documents using the specified vector store and service context.


index = VectorStoreIndex.from_documents(documents, storage_context=storage_context, service_context=service_context
)

Step 08: Defining Prompt Template and Configuring Query Engine

To facilitate question-answering, a prompt template is defined. This helps the bot to understand how it should interact with the user according to how you set, giving it tone, role etc. .The query engine is then configured to leverage this template. This step lays the groundwork for engaging in meaningful interactions with the indexed data.


template = (
    "We have provided context information below. \n"
    "---------------------\n"
    "{context_str}"
    "\n---------------------\n"
    "Given this information, please answer the question: {query_str}\n"
)

qa_template = PromptTemplate(template)

query_engine = index.as_query_engine(text_qa_template=qa_template)

Step 09: Performing a query

The culmination of our journey involves performing a sample query and displaying the result.


response = query_engine.query("What its the shape of the earth?")
print(responce)

CONCLUSION

The implementation of a text-to-vector indexing system using ChromaDB, Gemini, and VectorStore opens up a realm of possibilities for advanced NLP applications. This comprehensive guide serves as a foundation for building sophisticated text-based applications. As you continue your exploration, feel free to experiment with different document sets, query templates, and parameters to tailor the system to your specific requirements.

Happy coding!

...



๐Ÿ“Œ How you can create your own custom chatbot with your own custom data using Google Gemini API all for free


๐Ÿ“ˆ 100.09 Punkte

๐Ÿ“Œ Create a Chatbot Trained on Your Own Data via the OpenAI API


๐Ÿ“ˆ 38.03 Punkte

๐Ÿ“Œ Google Bard: Die Gemini ร„ra beginnt schon heute โ€“ der KI-ChatBot basiert jetzt auf Gemini Pro (Englisch)


๐Ÿ“ˆ 37.65 Punkte

๐Ÿ“Œ Microsoft will soon let you create your own chatbot using ChatGPT tech โ€“ report


๐Ÿ“ˆ 37.52 Punkte

๐Ÿ“Œ Build with Gemini: Developers can now access Google Gemini Pro for free


๐Ÿ“ˆ 35.71 Punkte

๐Ÿ“Œ Build your own ChatGPT using Google Gemini API


๐Ÿ“ˆ 35.39 Punkte

๐Ÿ“Œ You can now create your own custom themes in Edge. Hereโ€™s how


๐Ÿ“ˆ 32.95 Punkte

๐Ÿ“Œ This is Google Gemini! What do you think about it? #shorts #Google #Gemini #tech #phone #viral


๐Ÿ“ˆ 32.46 Punkte

๐Ÿ“Œ Google's Bard AI Chatbot Can Now Help You Code and Create Functions For Google Sheets


๐Ÿ“ˆ 31.22 Punkte

๐Ÿ“Œ You Can Create Your Own Ubuntu 17.04 GNU/Linux Distro Using the Latest ExTiX ISO


๐Ÿ“ˆ 30.9 Punkte

๐Ÿ“Œ Raspbian Remix Lets You Create Your Own Spin That You Can Install on PC or Mac


๐Ÿ“ˆ 29.7 Punkte

๐Ÿ“Œ Raspbian Remix Lets You Create Your Own Spin That You Can Install on PC or Mac


๐Ÿ“ˆ 29.7 Punkte

๐Ÿ“Œ Here's how to create your own custom chatbots using ChatGPT


๐Ÿ“ˆ 29.6 Punkte

๐Ÿ“Œ Microsoft wants to let you dub videos using your own voice in your own language, new patent reveals


๐Ÿ“ˆ 28.51 Punkte

๐Ÿ“Œ Gemini fรผr Google Workspace: Google startet die neuen Workspace-Pakete Gemini Business und Enterprise


๐Ÿ“ˆ 28.48 Punkte

๐Ÿ“Œ Create Your Own Local Chatbot with Next.js, Ollama, and ModelFusion


๐Ÿ“ˆ 28.37 Punkte

๐Ÿ“Œ Create Your Own Local Chatbot with Next.js, Llama.cpp, and ModelFusion


๐Ÿ“ˆ 28.37 Punkte

๐Ÿ“Œ How to create your own Chatbot for Website without Coding?


๐Ÿ“ˆ 28.37 Punkte

๐Ÿ“Œ How to publish your own custom GPT chatbot in OpenAI's store


๐Ÿ“ˆ 28.08 Punkte

๐Ÿ“Œ Should You Create Your Own E-Signature API?


๐Ÿ“ˆ 27.48 Punkte

๐Ÿ“Œ Gemini: Google bringt den neuen KI-ChatBot auf smarte Kopfhรถrer โ€“ lรถst den Google Assistant ab (Teardown)


๐Ÿ“ˆ 27.41 Punkte

๐Ÿ“Œ Building Your Own AI Chatbot With React and ChatGPT API


๐Ÿ“ˆ 27.15 Punkte

๐Ÿ“Œ Bard is now Gemini โœจ Chat with Gemini to supercharge your ideas, write, learn, plan and more


๐Ÿ“ˆ 26.96 Punkte

๐Ÿ“Œ Use Beat Saber's Level Editor to create your own tracks with your own music


๐Ÿ“ˆ 26.88 Punkte

๐Ÿ“Œ why my free space above and below /dev/sda10 is not merging. so can create a single partition of all this free space. how to fix ?


๐Ÿ“ˆ 26.74 Punkte

๐Ÿ“Œ Create your own free Adobe Creative Cloud with free and open source software (11/13 apps support Linux)


๐Ÿ“ˆ 26.56 Punkte

๐Ÿ“Œ Gemini Ultra vs GPT 4: How Google Gemini beats OpenAI GPT-4 in most benchmarks


๐Ÿ“ˆ 26.48 Punkte

๐Ÿ“Œ Google renames Bard, launches Gemini Advanced offering, and announces new Gemini app for Android and iOS


๐Ÿ“ˆ 26.48 Punkte

๐Ÿ“Œ Gemini Advanced & Google One: Das ist das neue KI-Abo โ€“ bringt Gemini Ultra und weitere Vorteile (Video)


๐Ÿ“ˆ 26.48 Punkte











matomo