Ausnahme gefangen: SSL certificate problem: certificate is not yet valid ๐Ÿ“Œ DRAGIN: A Novel Machine Learning Framework for Dynamic Retrieval Augmentation in Large Language Models and Outperforming Conventional Methods

๐Ÿ  Team IT Security News

TSecurity.de ist eine Online-Plattform, die sich auf die Bereitstellung von Informationen,alle 15 Minuten neuste Nachrichten, Bildungsressourcen und Dienstleistungen rund um das Thema IT-Sicherheit spezialisiert hat.
Ob es sich um aktuelle Nachrichten, Fachartikel, Blogbeitrรคge, Webinare, Tutorials, oder Tipps & Tricks handelt, TSecurity.de bietet seinen Nutzern einen umfassenden รœberblick รผber die wichtigsten Aspekte der IT-Sicherheit in einer sich stรคndig verรคndernden digitalen Welt.

16.12.2023 - TIP: Wer den Cookie Consent Banner akzeptiert, kann z.B. von Englisch nach Deutsch รผbersetzen, erst Englisch auswรคhlen dann wieder Deutsch!

Google Android Playstore Download Button fรผr Team IT Security



๐Ÿ“š DRAGIN: A Novel Machine Learning Framework for Dynamic Retrieval Augmentation in Large Language Models and Outperforming Conventional Methods


๐Ÿ’ก Newskategorie: AI Nachrichten
๐Ÿ”— Quelle: marktechpost.com

The Dynamic Retrieval Augmented Generation (RAG) paradigm aims to improve the performance of LLMs by determining when to retrieve external information and what to retrieve during text generation. Current methods often rely on static rules to decide when to recover and limit retrieval to recent sentences or tokens, which may not capture the full context. [โ€ฆ]

The post DRAGIN: A Novel Machine Learning Framework for Dynamic Retrieval Augmentation in Large Language Models and Outperforming Conventional Methods appeared first on MarkTechPost.

...



๐Ÿ“Œ Meet LLM Surgeon: A New Machine Learning Framework for Unstructured, Semi-Structured, and Structured Pruning of Large Language Models (LLMs)


๐Ÿ“ˆ 50.56 Punkte

๐Ÿ“Œ Meet TinyLLaVA: The Game-Changer in Machine Learning with Smaller Multimodal Frameworks Outperforming Larger Models


๐Ÿ“ˆ 48.87 Punkte

๐Ÿ“Œ Meet Medusa: An Efficient Machine Learning Framework for Accelerating Large Language Models (LLMs) Inference with Multiple Decoding Heads


๐Ÿ“ˆ 48.77 Punkte

๐Ÿ“Œ Large Language Models: How Large is Large Enough?


๐Ÿ“ˆ 47.22 Punkte

๐Ÿ“Œ Teaching is Hard: How to Train Small Models and Outperforming Large Counterparts


๐Ÿ“ˆ 46.27 Punkte

๐Ÿ“Œ Meet VLM-CaR (Code as Reward): A New Machine Learning Framework Empowering Reinforcement Learning with Vision-Language Models


๐Ÿ“ˆ 45.73 Punkte

๐Ÿ“Œ INSTRUCTIR: A Novel Machine Learning Benchmark for Evaluating Instruction Following in Information Retrieval


๐Ÿ“ˆ 45.12 Punkte

๐Ÿ“Œ Large Language Models, GPT-2โ€Šโ€”โ€ŠLanguage Models are Unsupervised Multitask Learners


๐Ÿ“ˆ 44.65 Punkte

๐Ÿ“Œ Large Language Models, GPT-3: Language Models are Few-Shot Learners


๐Ÿ“ˆ 44.65 Punkte

๐Ÿ“Œ Enhancing the Accuracy of Large Language Models with Corrective Retrieval Augmented Generation (CRAG)


๐Ÿ“ˆ 44.64 Punkte











matomo