Lädt...


🔧 Day 22 of 100 Days of Cloud: Mastering AWS Lambda and Lambda Layers


Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to

Welcome to Day 22 of our 100 Days of Cloud journey! Today, we're diving deep into AWS Lambda and exploring the power of Lambda Layers. By the end of this post, you'll have a solid understanding of these serverless technologies and how to leverage them in your cloud projects.

Step 1: Understanding AWS Lambda

AWS Lambda is a serverless compute service that lets you run code without provisioning or managing servers. Key points:

  • Supports multiple programming languages (Python, Node.js, Java, etc.)
  • Automatically scales based on the number of incoming requests
  • Pay only for the compute time you consume

Step 2: Creating Your First Lambda Function

  1. Log in to the AWS Management Console
  2. Navigate to the Lambda service
  3. Click "Create function"
  4. Choose "Author from scratch"
  5. Enter a function name and select your preferred runtime
  6. Click "Create function"
  7. In the function code editor, write a simple Hello World program
  8. Test your function using the "Test" button

Step 3: Configuring Lambda Function Settings

  1. Adjust memory allocation (128MB to 10,240MB)
  2. Set timeout (up to 15 minutes)
  3. Configure environment variables
  4. Set up IAM roles and permissions

Step 4: Introduction to Lambda Layers

Lambda Layers allow you to centralize and share common code and dependencies across multiple functions. Benefits include:

  • Reduced deployment package size
  • Easier dependency management
  • Code reusability

Step 5: Creating a Lambda Layer
Before we begin, ensure you have the following:

  1. Python 3.8 or later installed on your local machine
  2. AWS CLI configured with appropriate permissions
  3. A virtual environment tool (we'll use venv)

Step 2: Creating a Virtual Environment

  1. Open your terminal
  2. Navigate to your project directory
  3. Create a new virtual environment:
   python3 -m venv flask_layer
  1. Activate the virtual environment:
    • On Windows: flask_layer\Scripts\activate
    • On macOS/Linux: source flask_layer/bin/activate

Step 3: Installing Flask and Dependencies

  1. With your virtual environment activated, install Flask:
   pip install flask
  1. Create a requirements.txt file:
   pip freeze > requirements.txt

Step 4: Preparing the Layer Package

  1. Create a new directory for your layer:
   mkdir -p flask_layer/python
  1. Install Flask and its dependencies into this directory:
   pip install -r requirements.txt -t flask_layer/python

Step 5: Creating the Lambda Layer

  1. Zip the contents of the flask_layer directory:
   cd flask_layer
   zip -r ../flask_layer.zip .
   cd ..
  1. Log in to the AWS Management Console
  2. Navigate to the Lambda service
  3. Click on "Layers" in the left sidebar
  4. Click "Create layer"
  5. Fill in the details:
    • Name: FlaskLayer
    • Description: Flask and its dependencies
    • Upload the flask_layer.zip file
    • Choose Python 3.8 (or your preferred version) as the compatible runtime
  6. Click "Create"

Step 6: Using the Flask Layer in a Lambda Function

  1. In the Lambda console, create a new function or open an existing one
  2. Scroll down to the "Layers" section
  3. Click "Add a layer"
  4. Choose "Custom layers"
  5. Select your "FlaskLayer" and the appropriate version
  6. Click "Add"

Step 7: Writing a Flask Application in Lambda

Now that you have Flask available, you can write a simple Flask application within your Lambda function. Here's an example:

import json
from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/')
def hello():
    return jsonify(message="Hello from Flask in Lambda!")

def lambda_handler(event, context):
    return {
        'statusCode': 200,
        'body': json.dumps(hello().get_json())
    }

Step 8: Configuring API Gateway

To expose your Flask application:

  1. Create a new API in API Gateway
  2. Create a new resource and method, pointing to your Lambda function
  3. Deploy your API

Step 9: Testing Your Flask Application

  1. Use the API Gateway URL to test your endpoint
  2. You should see the JSON response: {"message": "Hello from Flask in Lambda!"}

Step 10: Advanced Considerations

  1. Route handling: For more complex applications, you'll need to parse the incoming event to determine the route and pass it to the appropriate Flask view function.

  2. WSGI adaptation: For full Flask functionality, consider using a WSGI adapter like Mangum to bridge API Gateway events with your Flask app.

  3. Cold starts: Be aware that using Flask may increase cold start times. Monitor and optimize as necessary.

  4. Layer size limits: Remember that Lambda Layers have a total unzipped size limit of 250 MB.

Conclusion:
Congratulations! You've successfully added Flask as a Lambda Layer and created a simple Flask application running in AWS Lambda. This powerful combination allows you to leverage Flask's features in a serverless environment, opening up new possibilities for your web applications.

Happy Clouding!

...

🔧 Day 22 of 100 Days of Cloud: Mastering AWS Lambda and Lambda Layers


📈 77.08 Punkte
🔧 Programmierung

🔧 Deploy Puppeteer and Chrome on AWS Lambda With Layers and AWS CDK


📈 42.92 Punkte
🔧 Programmierung

🔧 Build AWS Lambda Layers with AWS CDK


📈 39.69 Punkte
🔧 Programmierung

🔧 Learning AWS Day by Day — Day 45 — AWS Lambda


📈 37.77 Punkte
🔧 Programmierung

🔧 Spring Boot 3 application on AWS Lambda - Part 5 Introduction to AWS Lambda Web Adapter


📈 35.5 Punkte
🔧 Programmierung

🔧 Spring Boot 3 application on AWS Lambda - Part 6 Develop application with AWS Lambda Web Adapter


📈 35.5 Punkte
🔧 Programmierung

🔧 Enhancing AWS Lambda with AWS Lambda Powertools: A Complete Guide to CRUD Operations in DynamoDB


📈 35.5 Punkte
🔧 Programmierung

🔧 Test Observability for AWS Lambda with Grafana Tempo and OpenTelemetry Layers


📈 34.6 Punkte
🔧 Programmierung

🔧 100 Days of Servers Distributions- Days 4 and 100 Day 4 Introduction to Web Servers


📈 33.93 Punkte
🔧 Programmierung

🔧 AWS Lambda Layers Best Practices


📈 32.98 Punkte
🔧 Programmierung

🔧 Learn How to Write AWS Lambda Functions with Three Architecture Layers


📈 32.98 Punkte
🔧 Programmierung

🔧 Why You Should Use AWS Lambda Layers 📦


📈 32.98 Punkte
🔧 Programmierung

🔧 Why You Should Use AWS Lambda Layers 📦


📈 32.98 Punkte
🔧 Programmierung

🔧 Day 20 of 100 Days of Cloud: Mastering the Elastic Stack (ELK)


📈 31.44 Punkte
🔧 Programmierung

🔧 Day 21 of 100 Days of Cloud: Mastering Docker Volumes for Data Persistence


📈 31.44 Punkte
🔧 Programmierung

🔧 Mastering Scalable Data Warehousing on AWS: From S3 to Semantic Layers with AtScale


📈 31.2 Punkte
🔧 Programmierung

🔧 Day 19 of 100 Days of Cloud: JFrog Artifactory - Understanding and Installing on AWS EC2


📈 30.5 Punkte
🔧 Programmierung

📰 Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC


📈 30.06 Punkte
🔧 AI Nachrichten

🔧 Deploy nest app to AWS Lambda using cloud-formation stack and AWS CDK


📈 29.88 Punkte
🔧 Programmierung

🔧 100 Days of Servers Distributions- Days 1 and 100


📈 29.49 Punkte
🔧 Programmierung

🔧 100 Days of Servers Distributions- Days 2 and 100


📈 29.49 Punkte
🔧 Programmierung

🔧 100 Days of Servers Distributions- Days 3 and 100


📈 29.49 Punkte
🔧 Programmierung

🔧 🎨 Day 18: Mastering Layers in Figma 🎨


📈 28.93 Punkte
🔧 Programmierung

🔧 AWS Lambda support Node.js 18 now. Should we update the version of Node.js in the Lambda runtime?


📈 28.8 Punkte
🔧 Programmierung

🔧 How to optimize your lambda functions with AWS Lambda power tuning


📈 28.8 Punkte
🔧 Programmierung

🔧 Supercharge Your AWS Lambda Game With Lambda Powertools


📈 28.8 Punkte
🔧 Programmierung

🔧 Lambda Internals: Why AWS Lambda Will Not Help With Machine Learning


📈 28.8 Punkte
🔧 Programmierung

🔧 Turbocharge your Lambda Functions with AWS Lambda Powertools for Python


📈 28.8 Punkte
🔧 Programmierung

🔧 Spring Boot 3 application on AWS Lambda - Part 9 Develop application with Spring Cloud Function AWS


📈 28.26 Punkte
🔧 Programmierung

matomo