🔧 RandomHorizontalFlip in PyTorch
Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to
*My post explains OxfordIIITPet().
RandomHorizontalFlip() can flip zero or more images horizontally as shown below:
*Memos:
- The 1st argument for initialization is
p
(Optional-Default:0.5
-Type:float
). *It's the probability which each image is flipped. *It's the probability which each image is flipped. - The 1st argument is
img
(Required-Type:PIL Image
ortensor
,tuple
orlist
ofint
): *Memos:- It must be 2D.
- Don't use
img=
.
- PIL Image or Tensor
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms import v2
v2.RandomHorizontalFlip
# torchvision.transforms.v2._geometry.RandomHorizontalFlip
v2.RandomHorizontalFlip()
# RandomHorizontalFlip(p=0.5)
v2.RandomHorizontalFlip().p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
trans100_data = OxfordIIITPet(
root="data",
transform=v2.RandomHorizontalFlip(p=1.0)
)
trans50_data = OxfordIIITPet(
root="data",
transform=v2.RandomHorizontalFlip(p=0.5)
)
import matplotlib.pyplot as plt
def show_images(data, main_title=None):
plt.figure(figsize=(10, 5))
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images(data=origin_data, main_title="origin_data")
show_images(data=trans100_data, main_title="trans100_data")
show_images(data=trans50_data, main_title="trans50_data")
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms import v2
my_data = OxfordIIITPet(
root="data",
transform=None
)
import matplotlib.pyplot as plt
def show_images(data, main_title=None, prob=0.0):
plt.figure(figsize=(10, 5))
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rhf = v2.RandomHorizontalFlip(p=prob)
plt.imshow(X=rhf(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images(data=my_data, main_title="origin_data")
show_images(data=my_data, main_title="trans100_data", prob=1.0)
show_images(data=my_data, main_title="trans50_data", prob=0.5)
🔧 RandomHorizontalFlip in PyTorch
📈 46.62 Punkte
🔧 Programmierung
🔧 RandomHorizontalFlip in PyTorch
📈 46.62 Punkte
🔧 Programmierung
🔧 PyTorch Day 02: PyTorch Tensors Basics
📈 23.86 Punkte
🔧 Programmierung
🔧 PyTorch Day 02: PyTorch Tensors Basics
📈 23.86 Punkte
🔧 Programmierung
🔧 PyTorch on Azure: Full support for PyTorch 1.2
📈 23.86 Punkte
🔧 Programmierung
🔧 RandomCrop in PyTorch (1)
📈 11.93 Punkte
🔧 Programmierung
🔧 index_select() in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 atleast_3d in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 BatchNorm2d() in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 ReLU() and LeakyReLU() in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 isinf(), isposinf() and isneginf() in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 randn() and randn_like() in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 tile() in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 sum(), prod() and cartesian_prod() in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 RandomAffine in PyTorch (1)
📈 11.93 Punkte
🔧 Programmierung
🔧 PyTorch Day 03: Tensor Operations
📈 11.93 Punkte
🔧 Programmierung
🔧 isclose and equal in PyTorch
📈 11.93 Punkte
🔧 Programmierung
🔧 Layers in PyTorch (2)
📈 11.93 Punkte
🔧 Programmierung
🔧 CocoDetection in PyTorch (1)
📈 11.93 Punkte
🔧 Programmierung