Lädt...

🔧 Handling Big Data Challenges: A Case Study of AllFreeNovel.cc


Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to

AllFreeNovel.cc
## Technical Challenges & Solutions

1. Data Ingestion Bottlenecks

Problem:

Daily ingestion of 50,000+ new chapters from multiple sources (CN/JP/KR) with varying formats:

  • XML feeds from Korean publishers
  • JSON APIs from Chinese platforms
  • Raw text dumps from Japanese partners

Solution:

# Distributed ETL Pipeline
class ChapterIngestor:
    def __init__(self):
        self.kafka_topic = "raw-chapters"
        self.schema_registry = AvroSchemaRegistry()

    async def process(self, source):
        async for chunk in source.stream():
            normalized = await self._normalize(chunk)
            await kafka.produce(
                self.kafka_topic,
                value=normalized,
                schema=self.schema_registry.get(source.format)
            )

2. Search Performance Optimization

Metrics Before Optimization:

  • 1200ms average query latency
  • 78% cache miss rate
  • 12-node Elasticsearch cluster at 85% load

Implemented Solutions:

  1. Hybrid Index Strategy

    • Hot data (latest chapters): In-memory RedisSearch
    • Warm data: Elasticsearch with custom tokenizer
    • Cold data: ClickHouse columnar storage
  2. Query Pipeline:

graph TD
    A[User Query] --> B{Query Type?}
    B -->|Simple| C[RedisSearch]
    B -->|Complex| D[Elasticsearch]
    B -->|Analytics| E[ClickHouse]
    C/D/E --> F[Result Blender]
    F --> G[Response]

3. Real-time Recommendations

Challenge:

Generate personalized suggestions for 2M+ DAU with <100ms latency

ML Serving Architecture:

┌─────────────┐ ┌─────────────┐
│ Feature Store│◄─────│ Flink Jobs │
└──────┬───────┘ └─────────────┘

┌──────▼───────┐ ┌─────────────┐
│ Model Cache │─────►│ ONNX │
└──────┬───────┘ │ Runtime │
│ └─────────────┘
┌──────▼───────┐
│ User │
│ Interactions │
└──────────────┘

Results:

  • P99 latency reduced from 2200ms → 89ms
  • Recommendation CTR increased by 37%
  • Monthly infrastructure cost saved: $28,500

Key Takeaways

  1. Data Tiering is crucial for cost-performance balance
  2. Asynchronous Processing prevents pipeline backpressure
  3. Hybrid Indexing enables optimal query performance
  4. Model Optimization (ONNX conversion) dramatically improves ML serving
...

🔧 Handling Big Data Challenges: A Case Study of AllFreeNovel.cc


📈 79.7 Punkte
🔧 Programmierung

🔧 Snake Case VS Camel Case VS Pascal Case VS Kebab Case – What's the Difference Between Casings


📈 30.59 Punkte
🔧 Programmierung

🔧 Handling Big Data with ETL: Techniques &amp; Challenges


📈 25.96 Punkte
🔧 Programmierung

🔧 Navigating React.js SEO Challenges: A Case Study with CoderKit


📈 23.58 Punkte
🔧 Programmierung

🔧 UML Use Case Diagrams: A Restaurant System Case Study


📈 23.04 Punkte
🔧 Programmierung

📰 Case Study: The Cookie Privacy Monster in Big Global Retail


📈 21.04 Punkte
📰 IT Security Nachrichten

📰 eWEEK IT Science Case Study: How to Reduce a Big AWS Bill


📈 21.04 Punkte
📰 IT Nachrichten

📰 Disney Will Release Big Movies on Streaming 'On a Case-by-Case Basis'


📈 20.94 Punkte
📰 IT Security Nachrichten

🔧 Day 3: File Handling and Error Handling


📈 19.02 Punkte
🔧 Programmierung

🔧 Learning GO : 08 - File Handling, Error Handling


📈 19.02 Punkte
🔧 Programmierung

🔧 ### Introduction to Programming: Mastering File Handling and Exploring Error Handling


📈 19.02 Punkte
🔧 Programmierung

🔧 [Part 6]Error Handling and Exception Handling in Python for Robustness


📈 19.02 Punkte
🔧 Programmierung

🔧 [Part 6]Error Handling and Exception Handling in TypeScript for Robustness


📈 19.02 Punkte
🔧 Programmierung

🔧 Handling Forms, Validation Rules, and Error Handling in Laravel


📈 19.02 Punkte
🔧 Programmierung

🎥 Data Science Essentials – Crash Course in A/B Testing with Case Study


📈 18.03 Punkte
🎥 Video | Youtube

📰 Case Study: Applying a Data Science Process Model to a Real-World Scenario


📈 18.03 Punkte
🔧 AI Nachrichten

📰 A Real-World Case Study of Using Git Commands as a Data Scientist


📈 18.03 Punkte
🔧 AI Nachrichten

📰 Organize Your Data Science Projects with PPDAC — a Case Study


📈 18.03 Punkte
🔧 AI Nachrichten

📰 IT Science Case Study: Creating a Data-Driven Enterprise


📈 18.03 Punkte
📰 IT Nachrichten

📰 IT Science Case Study: Moving Data Faster into Analysis


📈 18.03 Punkte
📰 IT Nachrichten

📰 IT Science Case Study: New Data Platform Aimed at Industrial IoT


📈 18.03 Punkte
📰 IT Nachrichten

📰 IT Science Case Study: New Data Platform Aimed at Industrial IoT


📈 18.03 Punkte
📰 IT Nachrichten

📰 Synthetic Data in Practice: A Shopify Case Study


📈 18.03 Punkte
🔧 AI Nachrichten

📰 IT Science Case Study: Finding Controls to Analyze Large Data Volumes


📈 18.03 Punkte
📰 IT Nachrichten

🔧 Case Study: Creating an ETL Data Pipeline using AWS Services - Real-World Problem


📈 18.03 Punkte
🔧 Programmierung

📰 IT Science Case Study: How to Optimize the Data Scientist Function


📈 18.03 Punkte
📰 IT Nachrichten

🔧 Ensuring Top-Level Data Protection: A Case Study of LSP Capital’s Approach


📈 18.03 Punkte
🔧 Programmierung

🔧 Amazon QuickSight for Data Visualization on Streaming Platforms: A Netflix Case Study


📈 18.03 Punkte
🔧 Programmierung

📰 Energy <b>Data</b> Collection Protocol: A Case Study on the ADRENALIN Project


📈 18.03 Punkte
📰 IT Security Nachrichten

matomo