Lädt...

🔧 RandAugment in PyTorch (2)


Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to

Buy Me a Coffee

*Memos:

RandAugment() can randomly augment an image as the alternative of AutoAugment() as shown below:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

m0_data = OxfordIIITPet( # `m` is magnitude.
    root="data",
    transform=RandAugment(magnitude=0)
)

m1_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=1)
)

m2_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=2)
)

m5_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=5)
)

m10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=10)
)

m25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=25)
)

no1000m0_data = OxfordIIITPet( # `no` is num_ops.
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=0)
)

no1000m1_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=1)
)

no1000m2_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=2)
)

no1000m5_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=5)
)

no1000m10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=10)
)

no1000m25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=25)
)

m0nmb1000_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
    root="data",
    transform=RandAugment(magnitude=0, num_magnitude_bins=1000)
)

m1nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=1, num_magnitude_bins=1000)
)

m2nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=2, num_magnitude_bins=1000)
)

m5nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=5, num_magnitude_bins=1000)
)

m10nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=10, num_magnitude_bins=1000)
)

m25nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=25, num_magnitude_bins=1000)
)

m50nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=50, num_magnitude_bins=1000)
)

m100nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=100, num_magnitude_bins=1000)
)

m500nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=500, num_magnitude_bins=1000)
)

m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(magnitude=999, num_magnitude_bins=1000)
)

no1000m0nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=0, num_magnitude_bins=1000)
)

no1000m1nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=1, num_magnitude_bins=1000)
)

no1000m2nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=2, num_magnitude_bins=1000)
)

no1000m5nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=5, num_magnitude_bins=1000)
)

no1000m10nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=10, num_magnitude_bins=1000)
)

no1000m25nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=25, num_magnitude_bins=1000)
)

no1000m50nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=50, num_magnitude_bins=1000)
)

no1000m100nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=100, num_magnitude_bins=1000)
)

no1000m500nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=500, num_magnitude_bins=1000)
)

no1000m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=999, num_magnitude_bins=1000)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=m0_data, main_title="m0_data")
show_images1(data=m1_data, main_title="m1_data")
show_images1(data=m2_data, main_title="m2_data")
show_images1(data=m5_data, main_title="m5_data")
show_images1(data=m10_data, main_title="m10_data")
show_images1(data=m25_data, main_title="m25_data")
print()
show_images1(data=no1000m0_data, main_title="no1000m0_data")
show_images1(data=no1000m1_data, main_title="no1000m1_data")
show_images1(data=no1000m2_data, main_title="no1000m2_data")
show_images1(data=no1000m5_data, main_title="no1000m5_data")
show_images1(data=no1000m10_data, main_title="no1000m10_data")
show_images1(data=no1000m25_data, main_title="no1000m25_data")
print()
show_images1(data=m0nmb1000_data, main_title="m0nmb1000_data")
show_images1(data=m1nmb1000_data, main_title="m1nmb1000_data")
show_images1(data=m2nmb1000_data, main_title="m2nmb1000_data")
show_images1(data=m5nmb1000_data, main_title="m5nmb1000_data")
show_images1(data=m10nmb1000_data, main_title="m10nmb1000_data")
show_images1(data=m25nmb1000_data, main_title="m25nmb1000_data")
show_images1(data=m50nmb1000_data, main_title="m50nmb1000_data")
show_images1(data=m100nmb1000_data, main_title="m100nmb1000_data")
show_images1(data=m500nmb1000_data, main_title="m500nmb1000_data")
show_images1(data=m999nmb1000_data, main_title="m999nmb1000_data")
print()
show_images1(data=no1000m0nmb1000_data, main_title="no1000m0nmb1000_data")
show_images1(data=no1000m1nmb1000_data, main_title="no1000m1nmb1000_data")
show_images1(data=no1000m2nmb1000_data, main_title="no1000m2nmb1000_data")
show_images1(data=no1000m5nmb1000_data, main_title="no1000m5nmb1000_data")
show_images1(data=no1000m10nmb1000_data, main_title="no1000m10nmb1000_data")
show_images1(data=no1000m25nmb1000_data, main_title="no1000m25nmb1000_data")
show_images1(data=no1000m50nmb1000_data, main_title="no1000m50nmb1000_data")
show_images1(data=no1000m100nmb1000_data, main_title="no1000m100nmb1000_data")
show_images1(data=no1000m500nmb1000_data, main_title="no1000m500nmb1000_data")
show_images1(data=no1000m999nmb1000_data, main_title="no1000m999nmb1000_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, no=2, m=9, nmb=31,
                 ip=InterpolationMode.NEAREST, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = RandAugment(num_ops=no, magnitude=m,
                             num_magnitude_bins=nmb,
                             interpolation=ip, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="m0_data", m=0)
show_images2(data=origin_data, main_title="m1_data", m=1)
show_images2(data=origin_data, main_title="m2_data", m=2)
show_images2(data=origin_data, main_title="m5_data", m=5)
show_images2(data=origin_data, main_title="m10_data", m=10)
show_images2(data=origin_data, main_title="m25_data", m=25)
print()
show_images2(data=origin_data, main_title="no1000m0_data", no=1000, m=0)
show_images2(data=origin_data, main_title="no1000m1_data", no=1000, m=1)
show_images2(data=origin_data, main_title="no1000m2_data", no=1000, m=2)
show_images2(data=origin_data, main_title="no1000m5_data", no=1000, m=5)
show_images2(data=origin_data, main_title="no1000m10_data", no=1000, m=10)
show_images2(data=origin_data, main_title="no1000m25_data", no=1000, m=25)
print()
show_images2(data=origin_data, main_title="m0nmb1000_data", m=0, nmb=1000)
show_images2(data=origin_data, main_title="m1nmb1000_data", m=1, nmb=1000)
show_images2(data=origin_data, main_title="m2nmb1000_data", m=2, nmb=1000)
show_images2(data=origin_data, main_title="m5nmb1000_data", m=5, nmb=1000)
show_images2(data=origin_data, main_title="m10nmb1000_data", m=10, nmb=1000)
show_images2(data=origin_data, main_title="m25nmb1000_data", m=25, nmb=1000)
show_images2(data=origin_data, main_title="m50nmb1000_data", m=50, nmb=1000)
show_images2(data=origin_data, main_title="m100nmb1000_data", m=100, nmb=1000)
show_images2(data=origin_data, main_title="m500nmb1000_data", m=500, nmb=1000)
show_images2(data=origin_data, main_title="m999nmb1000_data", m=999, nmb=1000)
print()
show_images2(data=origin_data, main_title="no1000m0nmb1000_data", no=1000, m=0,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m1nmb1000_data", no=1000, m=1,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m2nmb1000_data", no=1000, m=2,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m5nmb1000_data", no=1000, m=5,
             nmb=1000)
show_images2(data=origin_data, main_title="no1000m10nmb1000_data", no=1000,
             m=10, nmb=1000)
show_images2(data=origin_data, main_title="no1000m25nmb1000_data", no=1000,
             m=25, nmb=1000)
show_images2(data=origin_data, main_title="no1000m50nmb1000_data", no=1000,
             m=50, nmb=1000)
show_images2(data=origin_data, main_title="no1000m100nmb1000_data", no=1000,
             m=100, nmb=1000)
show_images2(data=origin_data, main_title="no1000m500nmb1000_data", no=1000,
             m=500, nmb=1000)
show_images2(data=origin_data, main_title="no1000m999nmb1000_data", no=1000,
             m=999, nmb=1000)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

...

🔧 RandAugment in PyTorch (1)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (2)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (2)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (3)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (4)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (1)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (1)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (2)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (3)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (4)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (1)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (2)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (3)


📈 36.57 Punkte
🔧 Programmierung

📰 Pytorch: Microsoft startet neuen Azure-Service Pytorch Enterprise


📈 22.21 Punkte
📰 IT Nachrichten

📰 PyTorch Lightning 1.0: PyTorch, nur schneller und flexibler


📈 22.21 Punkte
📰 IT Nachrichten

🔧 PyTorch on Azure: Full support for PyTorch 1.2


📈 22.21 Punkte
🔧 Programmierung

🔧 Learn You a PyTorch! (aka Introduction Into PyTorch)


📈 22.21 Punkte
🔧 Programmierung

🔧 PyTorch Day 02: PyTorch Tensors Basics


📈 22.21 Punkte
🔧 Programmierung

🔧 PyTorch Day 02: PyTorch Tensors Basics


📈 22.21 Punkte
🔧 Programmierung

🔧 ToDtype in PyTorch


📈 11.1 Punkte
🔧 Programmierung

🔧 AugMix in PyTorch (15)


📈 11.1 Punkte
🔧 Programmierung

🔧 ElasticTransform in PyTorch (2)


📈 11.1 Punkte
🔧 Programmierung

🔧 RandomVerticalFlip in PyTorch


📈 11.1 Punkte
🔧 Programmierung

🔧 RandomAffine in PyTorch (4)


📈 11.1 Punkte
🔧 Programmierung

🔧 RandomResizedCrop in PyTorch (3)


📈 11.1 Punkte
🔧 Programmierung

🔧 RandomCrop in PyTorch


📈 11.1 Punkte
🔧 Programmierung

🔧 CocoDetection in PyTorch (1)


📈 11.1 Punkte
🔧 Programmierung

🔧 CelebA in PyTorch


📈 11.1 Punkte
🔧 Programmierung

🎥 A PyTorch and OPEA based AI Audio Avatar Chatbot | Tech Talk | Innovation Selects


📈 11.1 Punkte
🎥 Video | Youtube

🔧 index_select() in PyTorch


📈 11.1 Punkte
🔧 Programmierung

🔧 log2() and log10() in PyTorch


📈 11.1 Punkte
🔧 Programmierung

🔧 Added advanced debugging features to my machine learning library like pytorch.


📈 11.1 Punkte
🔧 Programmierung

matomo