Lädt...

🔧 RandAugment in PyTorch (1)


Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to

Buy Me a Coffee

*Memos:

RandAugment() can randomly augment an image as the alternative of AutoAugment() as shown below:

*Memos:

  • The 1st argument for initialization is num_ops(Optional-Default:2-Type:int). *It must be 0 <= x.
  • The 2nd argument for initialization is magnitude(Optional-Default:9-Type:int or tuple/list(int or float)): *Memos:
    • It must be 0 <= x and 0 < num_magnitude_bins.
  • The 3rd argument for initialization is num_magnitude_bins(Optional-Default:31-Type:int). *It must be 1 <= x.
  • The 4th argument for initialization is interpolation(Optional-Default:InterpolationMode.NEAREST-Type:InterpolationMode). *If the input is a tensor, only InterpolationMode.NEAREST, InterpolationMode.BILINEAR can be set to it.
  • The 5th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when augmenting an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
    • If all values are x <= 0, it's black.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandAugment
from torchvision.transforms.functional import InterpolationMode

ra = RandAugment()
ra = RandAugment(num_ops=2, magnitude=9, num_magnitude_bins=31,
                 interpolation = InterpolationMode.NEAREST,
                 fill=None)
ra
# RandAugment(interpolation=InterpolationMode.NEAREST,
#             num_ops=2, magnitude=9, num_magnitude_bins=31)

ra.num_ops
# 2

ra.magnitude
# 9

ra.num_magnitude_bins
# 31

ra.interpolation
# <InterpolationMode.NEAREST: 'nearest'>

print(ra.fill)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

no0_data = OxfordIIITPet( # `no` is num_ops.
    root="data",
    transform=RandAugment(num_ops=0)
)

no1_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1)
)

no2_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=2)
)

no5_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=5)
)

no10_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=10)
)

no25_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=25)
)

no50_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=50)
)

no100_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=100)
)

no500_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=500)
)

no1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000)
)

no0m30_data = OxfordIIITPet( # `m` is magnitude.
    root="data",
    transform=RandAugment(num_ops=0, magnitude=30)
)

no1m30_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1, magnitude=30)
)

no2m30_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=2, magnitude=30)
)

no5m30_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=5, magnitude=30)
)

no10m30_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=10, magnitude=30)
)

no25m30_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=25, magnitude=30)
)

no0nmb1000_data = OxfordIIITPet( # `nmb` is num_magnitude_bins.
    root="data",
    transform=RandAugment(num_ops=0, num_magnitude_bins=1000)
)

no1nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1, num_magnitude_bins=1000)
)

no2nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=2, num_magnitude_bins=1000)
)

no5nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=5, num_magnitude_bins=1000)
)

no10nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=10, num_magnitude_bins=1000)
)

no25nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=25, num_magnitude_bins=1000)
)

no50nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=50, num_magnitude_bins=1000)
)

no100nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=100, num_magnitude_bins=1000)
)

no500nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=500, num_magnitude_bins=1000)
)

no1000nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, num_magnitude_bins=1000)
)

no0m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=0, magnitude=999, num_magnitude_bins=1000)
)

no1m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1, magnitude=999, num_magnitude_bins=1000)
)

no2m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=2, magnitude=999, num_magnitude_bins=1000)
)

no5m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=5, magnitude=999, num_magnitude_bins=1000)
)

no10m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=10, magnitude=999, num_magnitude_bins=1000)
)

no25m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=25, magnitude=999, num_magnitude_bins=1000)
)

no50m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=50, magnitude=999, num_magnitude_bins=1000)
)

no100m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=100, magnitude=999, num_magnitude_bins=1000)
)

no500m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=500, magnitude=999, num_magnitude_bins=1000)
)

no1000m999nmb1000_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=1000, magnitude=999, num_magnitude_bins=1000)
)

no25f150_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=25, fill=150)
)

no25f160_32_240_data = OxfordIIITPet(
    root="data",
    transform=RandAugment(num_ops=25, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=no0_data, main_title="no0_data")
show_images1(data=no1_data, main_title="no1_data")
show_images1(data=no2_data, main_title="no2_data")
show_images1(data=no5_data, main_title="no5_data")
show_images1(data=no10_data, main_title="no10_data")
show_images1(data=no25_data, main_title="no25_data")
show_images1(data=no50_data, main_title="no50_data")
show_images1(data=no100_data, main_title="no100_data")
show_images1(data=no500_data, main_title="no500_data")
show_images1(data=no1000_data, main_title="no1000_data")
print()
show_images1(data=no0m30_data, main_title="no0m30_data")
show_images1(data=no1m30_data, main_title="no1m30_data")
show_images1(data=no2m30_data, main_title="no2m30_data")
show_images1(data=no5m30_data, main_title="no5m30_data")
show_images1(data=no10m30_data, main_title="no10m30_data")
show_images1(data=no25m30_data, main_title="no25m30_data")
print()
show_images1(data=no0nmb1000_data, main_title="no0nmb1000_data")
show_images1(data=no1nmb1000_data, main_title="no1nmb1000_data")
show_images1(data=no2nmb1000_data, main_title="no2nmb1000_data")
show_images1(data=no5nmb1000_data, main_title="no5nmb1000_data")
show_images1(data=no10nmb1000_data, main_title="no10nmb1000_data")
show_images1(data=no25nmb1000_data, main_title="no25nmb1000_data")
show_images1(data=no50nmb1000_data, main_title="no50nmb1000_data")
show_images1(data=no100nmb1000_data, main_title="no100nmb1000_data")
show_images1(data=no500nmb1000_data, main_title="no500nmb1000_data")
show_images1(data=no1000nmb1000_data, main_title="no1000nmb1000_data")
print()
show_images1(data=no0m999nmb1000_data, main_title="no0m999nmb1000_data")
show_images1(data=no1m999nmb1000_data, main_title="no1m999nmb1000_data")
show_images1(data=no2m999nmb1000_data, main_title="no2m999nmb1000_data")
show_images1(data=no5m999nmb1000_data, main_title="no5m999nmb1000_data")
show_images1(data=no10m999nmb1000_data, main_title="no10m999nmb1000_data")
show_images1(data=no25m999nmb1000_data, main_title="no25m999nmb1000_data")
show_images1(data=no50m999nmb1000_data, main_title="no50m999nmb1000_data")
show_images1(data=no100m999nmb1000_data, main_title="no100m999nmb1000_data")
show_images1(data=no500m999nmb1000_data, main_title="no500m999nmb1000_data")
show_images1(data=no1000m999nmb1000_data, main_title="no1000m999nmb1000_data")
print()
show_images1(data=no25f150_data, main_title="no25f150_data")
show_images1(data=no25f160_32_240_data, main_title="no25f160_32_240_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, no=2, m=9, nmb=31,
                 ip=InterpolationMode.NEAREST, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            ra = RandAugment(num_ops=no, magnitude=m,
                             num_magnitude_bins=nmb,
                             interpolation=ip, fill=f)
            plt.imshow(X=ra(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="no0_data", no=0)
show_images2(data=origin_data, main_title="no1_data", no=1)
show_images2(data=origin_data, main_title="no2_data", no=2)
show_images2(data=origin_data, main_title="no5_data", no=5)
show_images2(data=origin_data, main_title="no10_data", no=10)
show_images2(data=origin_data, main_title="no25_data", no=25)
show_images2(data=origin_data, main_title="no50_data", no=50)
show_images2(data=origin_data, main_title="no100_data", no=100)
show_images2(data=origin_data, main_title="no500_data", no=500)
show_images2(data=origin_data, main_title="no1000_data", no=1000)
print()
show_images2(data=origin_data, main_title="no0m30_data", no=0, m=30)
show_images2(data=origin_data, main_title="no1m30_data", no=1, m=30)
show_images2(data=origin_data, main_title="no2m30_data", no=2, m=30)
show_images2(data=origin_data, main_title="no5m30_data", no=5, m=30)
show_images2(data=origin_data, main_title="no10m30_data", no=10, m=30)
show_images2(data=origin_data, main_title="no25m30_data", no=25, m=30)
print()
show_images2(data=origin_data, main_title="no0nmb1000_data", no=0,
             nmb=1000)
show_images2(data=origin_data, main_title="no1nmb1000_data", no=1, 
             nmb=1000)
show_images2(data=origin_data, main_title="no2nmb1000_data", no=2, 
             nmb=1000)
show_images2(data=origin_data, main_title="no5nmb1000_data", no=5, 
             nmb=1000)
show_images2(data=origin_data, main_title="no10nmb1000_data", no=10, 
             nmb=1000)
show_images2(data=origin_data, main_title="no25nmb1000_data", no=25, 
             nmb=1000)
show_images2(data=origin_data, main_title="no50nmb1000_data", no=50, 
             nmb=1000)
show_images2(data=origin_data, main_title="no100nmb1000_data", no=100, 
             nmb=1000)
show_images2(data=origin_data, main_title="no500nmb1000_data", no=500, 
             nmb=1000)
show_images2(data=origin_data, main_title="no1000nmb1000_data", no=1000, 
             nmb=1000)
print()
show_images2(data=origin_data, main_title="no0m999nmb1000_data", no=0, 
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no1m999nmb1000_data", no=1, 
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no2m999nmb1000_data", no=2, 
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no5m999nmb1000_data", no=5, 
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no10m999nmb1000_data", no=10, 
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no25m999nmb1000_data", no=25, 
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no50m999nmb1000_data", no=50, 
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no100m999nmb1000_data", no=100, 
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no500m999nmb1000_data", no=500,
             m=999, nmb=1000)
show_images2(data=origin_data, main_title="no1000m999nmb1000_data", no=1000,
             m=999, nmb=1000)
print()
show_images2(data=origin_data, main_title="no25f150_data", no=25, f=150)
show_images2(data=origin_data, main_title="no25f160_32_240_data", no=25,
             f=[160, 32, 240])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

...

🔧 RandAugment in PyTorch (1)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (2)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (2)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (3)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (4)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (1)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (1)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (2)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (3)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (4)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (1)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (2)


📈 36.57 Punkte
🔧 Programmierung

🔧 RandAugment in PyTorch (3)


📈 36.57 Punkte
🔧 Programmierung

📰 Pytorch: Microsoft startet neuen Azure-Service Pytorch Enterprise


📈 22.17 Punkte
📰 IT Nachrichten

📰 PyTorch Lightning 1.0: PyTorch, nur schneller und flexibler


📈 22.17 Punkte
📰 IT Nachrichten

🔧 PyTorch on Azure: Full support for PyTorch 1.2


📈 22.17 Punkte
🔧 Programmierung

🔧 Learn You a PyTorch! (aka Introduction Into PyTorch)


📈 22.17 Punkte
🔧 Programmierung

🔧 PyTorch Day 02: PyTorch Tensors Basics


📈 22.17 Punkte
🔧 Programmierung

🔧 PyTorch Day 02: PyTorch Tensors Basics


📈 22.17 Punkte
🔧 Programmierung

📰 PyTorch Introduces torchcodec: A Machine Learning Library for Decoding Videos into PyTorch Tensors


📈 22.17 Punkte
🔧 AI Nachrichten

🔧 ToDtype in PyTorch


📈 11.08 Punkte
🔧 Programmierung

🔧 AugMix in PyTorch (15)


📈 11.08 Punkte
🔧 Programmierung

🔧 ElasticTransform in PyTorch (2)


📈 11.08 Punkte
🔧 Programmierung

🔧 RandomVerticalFlip in PyTorch


📈 11.08 Punkte
🔧 Programmierung

🔧 RandomAffine in PyTorch (4)


📈 11.08 Punkte
🔧 Programmierung

🔧 RandomResizedCrop in PyTorch (3)


📈 11.08 Punkte
🔧 Programmierung

🔧 RandomCrop in PyTorch


📈 11.08 Punkte
🔧 Programmierung

🔧 CocoDetection in PyTorch (1)


📈 11.08 Punkte
🔧 Programmierung

🔧 CelebA in PyTorch


📈 11.08 Punkte
🔧 Programmierung

🎥 A PyTorch and OPEA based AI Audio Avatar Chatbot | Tech Talk | Innovation Selects


📈 11.08 Punkte
🎥 Video | Youtube

🔧 index_select() in PyTorch


📈 11.08 Punkte
🔧 Programmierung

🔧 log2() and log10() in PyTorch


📈 11.08 Punkte
🔧 Programmierung

🔧 Added advanced debugging features to my machine learning library like pytorch.


📈 11.08 Punkte
🔧 Programmierung