Lädt...

🔧 Ollama Model Comparator: Compare LLM Responses Side-by-Side


Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to

Hey Dev.to community! 👋

Have you ever wondered which local LLM is better at answering your specific questions? Or if that fancy new model is actually worth the disk space? Well, I've been tinkering with Ollama lately, and I wanted an easy way to put different models head-to-head.

So I built the Ollama Model Comparator - a super simple but surprisingly useful tool that lets you compare responses from different Ollama models side by side.

Ollama Model Comparator Interface

What does it do?

It's pretty straightforward:

  • Pick any two Ollama models from a dropdown (or add custom ones)
  • Enter your prompt
  • Hit "Compare" and watch the magic happen
  • Check out not just the responses, but also the generation time and token counts

Tech stuff (for the curious)

The app is built with:

  • Python and Gradio for the UI (super easy to use!)
  • Requests library to talk to Ollama's API
  • A sprinkle of passion for local LLMs

Getting started in 30 seconds

  1. Make sure you have Ollama running
  2. Clone the repo: git clone https://github.com/your-username/ollama-model-comparator.git
  3. Install deps: pip install gradio requests
  4. Run it: python app.py
  5. Open your browser to http://127.0.0.1:7860

That's it! No API keys, no complicated setup.

What's next & how you can help

This is just v1, and I'd love to make it better with your help! Some ideas I'm thinking about:

  • Adding response streaming (because waiting is boring)
  • Supporting more than two models at once (royal rumble style)
  • Adding more detailed comparison metrics
  • Making the UI prettier (I'm a backend person, can you tell? 😅)

If you're into local LLMs and want to contribute, I'd love your help! The code is simple enough that even if you're new to Python, you can probably jump in.

Try it out!

The project is available on GitHub under the MIT license.

Would love to hear what you think! Which models are you comparing? Any surprising results? Drop a comment below!

Happy comparing! 🚀

...

🔧 Using the Ollama API to run LLMs and generate responses locally


📈 28.13 Punkte
🔧 Programmierung

🔧 Ollama Cheatsheet: Running LLMs Locally with Ollama


📈 27.77 Punkte
🔧 Programmierung

🔧 Ollama-OCR for High-Precision OCR with Ollama


📈 27.77 Punkte
🔧 Programmierung

🔧 Llama Ollama: Unlocking Local LLMs with ollama.ai


📈 27.77 Punkte
🔧 Programmierung

🎥 Using Microsoft 365 Copilot in Operations: Compare RFP responses


📈 27.71 Punkte
🎥 Video | Youtube

🍏 Beyond Compare 4.4.5.27371 - Visually compare and merge files and folders.


📈 26.95 Punkte
🍏 iOS / Mac OS

🔧 Comparable vs Comparator Interfaces in Java – Which Should You Use and When?


📈 26.14 Punkte
🔧 Programmierung

🔧 The Comparator Interface


📈 26.14 Punkte
🔧 Programmierung

🔧 Comparable and Comparator in Java


📈 26.14 Punkte
🔧 Programmierung

🕵️ Reverse-engineering a vintage comparator chip


📈 26.14 Punkte
🕵️ Reverse Engineering

🔧 5.4 Conhecendo melhor o Comparator.comparing


📈 26.14 Punkte
🔧 Programmierung

🔧 5.3 Métodos Estáticos na Interface Comparator


📈 26.14 Punkte
🔧 Programmierung

🔧 Java Comparator vs Comparable Guide with Example


📈 26.14 Punkte
🔧 Programmierung

🔧 Sorting Smarts in Java: Comparable and Comparator


📈 26.14 Punkte
🔧 Programmierung

🔧 ¿Cómo funciona Comparator en Java?


📈 26.14 Punkte
🔧 Programmierung

📰 ST-LLM: An Effective Video-LLM Baseline with Spatial-Temporal Sequence Modeling Inside LLM


📈 25.4 Punkte
🔧 AI Nachrichten

📰 How to Improve LLM Responses With Better Sampling Parameters


📈 22.71 Punkte
🔧 AI Nachrichten

🔧 StructuredRAG: Enhancing LLM JSON Responses with Hierarchical Organization and Type Annotations


📈 22.71 Punkte
🔧 Programmierung

🔧 Validating LLM Responses: Pydantic & Instructor Integration with LLMs (Part II)


📈 22.71 Punkte
🔧 Programmierung

📰 Deciphering Doubt: Navigating Uncertainty in LLM Responses


📈 22.71 Punkte
🔧 AI Nachrichten

🔧 How to stream LLM responses using AWS API Gateway Websocket and Lambda


📈 22.71 Punkte
🔧 Programmierung

🔧 Stream LLM Responses from Cache


📈 22.71 Punkte
🔧 Programmierung

🔧 Ensuring Reliable JSON from LLM Responses in PHP


📈 22.71 Punkte
🔧 Programmierung

📰 Improve LLM responses in RAG use cases by interacting with the user


📈 22.71 Punkte
🔧 AI Nachrichten

🔧 How to Implement LLM Grounding for Better Responses


📈 22.71 Punkte
🔧 Programmierung

🔧 Formatting LLM Responses: From Unstructured Text to Structured Outputs


📈 22.71 Punkte
🔧 Programmierung

🔧 Tailor LLM’s responses to your personal style in Microsoft Word


📈 22.71 Punkte
🔧 Programmierung

🔧 Overcoming LLM Testing Challenges with Pytest and Trulens: Ensuring Reliable Responses


📈 22.71 Punkte
🔧 Programmierung