Lädt...

🔧 🚀Algorithm Techniques for Efficient Problem Solving


Nachrichtenbereich: 🔧 Programmierung
🔗 Quelle: dev.to

🚀 Must-Know Algorithm Techniques for Efficient Problem Solving

Mastering algorithmic techniques can significantly improve your coding efficiency. Below are some key strategies along with examples and LeetCode problems to help you practice. 💡

🔹 1. Two Pointer Technique 🏃‍♂️🏃‍♀️

Concept: Use two pointers to efficiently search through a sorted list.

Common Use Cases:

  • Searching in sorted arrays
  • Finding pairs that meet a condition

Example: Find two numbers in a sorted array that sum to a target value.

function twoSumSorted(arr, target) {
  let left = 0, right = arr.length - 1;
  while (left < right) {
    let sum = arr[left] + arr[right];
    if (sum === target) return [arr[left], arr[right]];
    sum < target ? left++ : right--;
  }
  return [];
}

Practice: Two Sum II

🔹 2. Prefix Sum ➕

Concept: Compute cumulative sums to quickly answer range sum queries.

Common Use Cases:

  • Fast range sum calculations
  • Detecting patterns in sequences

Example: Compute prefix sums for an array.

function prefixSum(arr) {
  let prefix = [0];
  for (let i = 0; i < arr.length; i++) {
    prefix[i + 1] = prefix[i] + arr[i];
  }
  return prefix;
}

Practice: Range Sum Query

🔹 3. Top K Elements 🔝

Concept: Use sorting or heaps to find the most important elements in a list.

Example: Find the largest k elements.

function topKElements(arr, k) {
  return arr.sort((a, b) => b - a).slice(0, k);
}

Practice: Top K Frequent Elements

🔹 4. Sliding Window 🏠

Concept: Use a moving window to optimize range-based computations.

Example: Find the maximum sum of any k consecutive elements.

function maxSumSubarray(arr, k) {
  let sum = 0, maxSum = -Infinity;
  for (let i = 0; i < k; i++) sum += arr[i];
  for (let i = k; i < arr.length; i++) {
    sum += arr[i] - arr[i - k];
    maxSum = Math.max(maxSum, sum);
  }
  return maxSum;
}

Practice: Maximum Subarray

🔹 5. Breadth-First Search 🌳

Concept: Explore a graph layer by layer.

Example: Traverse a graph using BFS.

function bfs(graph, start) {
  let queue = [start], visited = new Set(queue);
  while (queue.length) {
    let node = queue.shift();
    console.log(node);
    for (let neighbor of graph[node]) {
      if (!visited.has(neighbor)) {
        visited.add(neighbor);
        queue.push(neighbor);
      }
    }
  }
}

Practice: Binary Tree Level Order Traversal

🔹 6. Depth-First Search 🕵️

Concept: Explore one path deeply before backtracking.

Example: Perform DFS on a graph.

function dfs(graph, node, visited = new Set()) {
  if (visited.has(node)) return;
  visited.add(node);
  console.log(node);
  for (let neighbor of graph[node]) {
    dfs(graph, neighbor, visited);
  }
}

Practice: Number of Islands

🔹 7. Topological Sort 📋

Concept: Order tasks when dependencies exist.

Example: Perform topological sorting.

function topologicalSort(graph) {
  let inDegree = {}, queue = [], result = [];
  Object.keys(graph).forEach(node => inDegree[node] = 0);
  Object.values(graph).flat().forEach(node => inDegree[node]++);
  Object.keys(graph).forEach(node => inDegree[node] === 0 && queue.push(node));
  while (queue.length) {
    let node = queue.shift();
    result.push(node);
    graph[node].forEach(neighbor => {
      if (--inDegree[neighbor] === 0) queue.push(neighbor);
    });
  }
  return result;
}

Practice: Course Schedule II

🔹 8. Divide and Conquer ✂️

Concept: Break a problem into smaller parts and solve them independently.

Example: Implement merge sort.

function mergeSort(arr) {
  if (arr.length < 2) return arr;
  let mid = Math.floor(arr.length / 2);
  let left = mergeSort(arr.slice(0, mid));
  let right = mergeSort(arr.slice(mid));
  return merge(left, right);
}
function merge(left, right) {
  let result = [];
  while (left.length && right.length) {
    result.push(left[0] < right[0] ? left.shift() : right.shift());
  }
  return [...result, ...left, ...right];
}

Practice: Sort an Array

🚀 Keep Practicing!

These techniques will significantly improve your problem-solving skills. Keep practicing and refining your approach! 💪🎉

💬 Have questions? Drop them in the comments! 👇

...

🔧 🚀Algorithm Techniques for Efficient Problem Solving


📈 46.06 Punkte
🔧 Programmierung

🔧 Hacking is creativity. Creativity is problem solving. Therefore, hacking is problem solving.


📈 34.81 Punkte
🔧 Programmierung

🔧 Hacking is creativity. Creativity is problem solving. Therefore, hacking is problem solving.


📈 34.81 Punkte
🔧 Programmierung

🎥 Main Stage: Solving the Cyber Hard Problems: A View into Problem Solving from the White House


📈 28.72 Punkte
🎥 IT Security Video

🔧 You're Not Solving the Problem You Think You're Solving | AI Show


📈 28.72 Punkte
🔧 Programmierung

🎥 You're Not Solving the Problem You Think You're Solving


📈 28.72 Punkte
🎥 Video | Youtube

📰 Solving The Travelling Salesman Problem Using A Genetic Algorithm


📈 28.01 Punkte
🔧 AI Nachrichten

📰 Solving The Travelling Salesman Problem Using A Genetic Algorithm


📈 28.01 Punkte
🔧 AI Nachrichten

🔧 Beyond arrays and linked lists: Exploring powerful data structures for efficient problem solving


📈 26.54 Punkte
🔧 Programmierung

🔧 DAY 38 Binary Search Meets Heaps: Efficient Problem Solving


📈 26.54 Punkte
🔧 Programmierung

🔧 Goroutines: Solving the problem of efficient multithreading


📈 26.54 Punkte
🔧 Programmierung

🎥 OPENAI'S Q-LEARNING FOR MORE EFFICIENT PROBLEM SOLVING AI | TECH NEWS


📈 26.54 Punkte
🎥 Künstliche Intelligenz Videos

🎥 OPENAI'S Q-LEARNING FOR MORE EFFICIENT PROBLEM SOLVING AI | TECH NEWS


📈 26.54 Punkte
🎥 Künstliche Intelligenz Videos

🔧 Data Structures and Algorithms: Mastering the Building Blocks for Efficient Problem-Solving


📈 26.54 Punkte
🔧 Programmierung

🔧 Understanding DSA Techniques: A Beginner's Guide to Problem Solving


📈 26.33 Punkte
🔧 Programmierung

🔧 Cracking the Code: Essential Problem-Solving Techniques for Today's Dynamic Developer Landscape


📈 26.33 Punkte
🔧 Programmierung

🔧 Understanding DSA Techniques: A Beginner's Guide to Problem Solving


📈 26.33 Punkte
🔧 Programmierung

🔧 N-Queens Problem: The Puzzle That Teaches Problem-Solving


📈 23.5 Punkte
🔧 Programmierung

🕵️ Solving a VM-based CTF challenge without solving it properly - gynvael.coldwind//vx.log


📈 22.63 Punkte
🕵️ Reverse Engineering

🔧 🐭 Solving Mazes with the Rat in a Maze Algorithm


📈 21.92 Punkte
🔧 Programmierung

🔧 "Navigating the Maze: Solving Pathfinding Problems with the Rat in a Maze Algorithm"


📈 21.92 Punkte
🔧 Programmierung

🔧 Solving the Maze: The Power of Rat in the Maze Algorithm


📈 21.92 Punkte
🔧 Programmierung

🔧 "Navigating the Maze: Solving Pathfinding Problems with the Rat in a Maze Algorithm"


📈 21.92 Punkte
🔧 Programmierung

🎥 A New and Improved Version Solving Algorithm (Dart Conference 2018)


📈 21.92 Punkte
🎥 Videos

🔧 Understanding merge sort algorithm: Beginner's guide to mastering sorting algorithm


📈 21.21 Punkte
🔧 Programmierung

🔧 What is an Algorithm? Algorithm Definition for Computer Science Beginners


📈 21.21 Punkte
🔧 Programmierung

🔧 Title: "The Art of Graph Coloring: Solving Real-World Problems with Efficient Solutions"


📈 20.45 Punkte
🔧 Programmierung

🔧 Fake CLR: Exploring Contrastive Learning for Solving Latent Discontinuity in Data-Efficient GANs


📈 20.45 Punkte
🔧 Programmierung

matomo