logo
 
  1. Server >
  2. Unix Server >
  3. USN-4118-1: Linux kernel (AWS) vulnerabilities


ArabicEnglishFrenchGermanGreekItalianJapaneseKoreanPersianPolishPortugueseRussianSpanishTurkishVietnamese

➤ USN-4118-1: Linux kernel (AWS) vulnerabilities

RSS Kategorie Pfeil Unix Server vom | Quelle: usn.ubuntu.com Direktlink öffnen Nachrichten Bewertung

linux-aws vulnerabilities

A security issue affects these releases of Ubuntu and its derivatives:

  • Ubuntu 18.04 LTS
  • Ubuntu 16.04 LTS

Summary

Several security issues were fixed in the Linux kernel.

Software Description

  • linux-aws - Linux kernel for Amazon Web Services (AWS) systems
  • linux-aws-hwe - Linux kernel for Amazon Web Services (AWS-HWE) systems

Details

It was discovered that the alarmtimer implementation in the Linux kernel contained an integer overflow vulnerability. A local attacker could use this to cause a denial of service. (CVE-2018-13053)

Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly track inode validations. An attacker could use this to construct a malicious XFS image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13093)

Wen Xu discovered that the f2fs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious f2fs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13096, CVE-2018-13097, CVE-2018-13098, CVE-2018-13099, CVE-2018-13100, CVE-2018-14614, CVE-2018-14615, CVE-2018-14616)

Wen Xu and Po-Ning Tseng discovered that btrfs file system implementation in the Linux kernel did not properly validate metadata. An attacker could use this to construct a malicious btrfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14609, CVE-2018-14610, CVE-2018-14611, CVE-2018-14612, CVE-2018-14613)

Wen Xu discovered that the HFS+ filesystem implementation in the Linux kernel did not properly handle malformed catalog data in some situations. An attacker could use this to construct a malicious HFS+ image that, when mounted, could cause a denial of service (system crash). (CVE-2018-14617)

Vasily Averin and Pavel Tikhomirov discovered that the cleancache subsystem of the Linux kernel did not properly initialize new files in some situations. A local attacker could use this to expose sensitive information. (CVE-2018-16862)

Hui Peng and Mathias Payer discovered that the Option USB High Speed driver in the Linux kernel did not properly validate metadata received from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-19985)

Hui Peng and Mathias Payer discovered that the USB subsystem in the Linux kernel did not properly handle size checks when handling an extra USB descriptor. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2018-20169)

Zhipeng Xie discovered that an infinite loop could triggered in the CFS Linux kernel process scheduler. A local attacker could possibly use this to cause a denial of service. (CVE-2018-20784)

It was discovered that a use-after-free error existed in the block layer subsystem of the Linux kernel when certain failure conditions occurred. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-20856)

Eli Biham and Lior Neumann discovered that the Bluetooth implementation in the Linux kernel did not properly validate elliptic curve parameters during Diffie-Hellman key exchange in some situations. An attacker could use this to expose sensitive information. (CVE-2018-5383)

It was discovered that the Intel wifi device driver in the Linux kernel did not properly validate certain Tunneled Direct Link Setup (TDLS). A physically proximate attacker could use this to cause a denial of service (wifi disconnect). (CVE-2019-0136)

It was discovered that a heap buffer overflow existed in the Marvell Wireless LAN device driver for the Linux kernel. An attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-10126)

It was discovered that the Bluetooth UART implementation in the Linux kernel did not properly check for missing tty operations. A local attacker could use this to cause a denial of service. (CVE-2019-10207)

Amit Klein and Benny Pinkas discovered that the Linux kernel did not sufficiently randomize IP ID values generated for connectionless networking protocols. A remote attacker could use this to track particular Linux devices. (CVE-2019-10638)

Amit Klein and Benny Pinkas discovered that the location of kernel addresses could exposed by the implementation of connection-less network protocols in the Linux kernel. A remote attacker could possibly use this to assist in the exploitation of another vulnerability in the Linux kernel. (CVE-2019-10639)

Adam Zabrocki discovered that the Intel i915 kernel mode graphics driver in the Linux kernel did not properly restrict mmap() ranges in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11085)

It was discovered that an integer overflow existed in the Linux kernel when reference counting pages, leading to potential use-after-free issues. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11487)

Jann Horn discovered that a race condition existed in the Linux kernel when performing core dumps. A local attacker could use this to cause a denial of service (system crash) or expose sensitive information. (CVE-2019-11599)

It was discovered that a null pointer dereference vulnerability existed in the LSI Logic MegaRAID driver in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-11810)

It was discovered that a race condition leading to a use-after-free existed in the Reliable Datagram Sockets (RDS) protocol implementation in the Linux kernel. The RDS protocol is blacklisted by default in Ubuntu. If enabled, a local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-11815)

It was discovered that the ext4 file system implementation in the Linux kernel did not properly zero out memory in some situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-11833)

It was discovered that the Bluetooth Human Interface Device Protocol (HIDP) implementation in the Linux kernel did not properly verify strings were NULL terminated in certain situations. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2019-11884)

It was discovered that a NULL pointer dereference vulnerabilty existed in the Near-field communication (NFC) implementation in the Linux kernel. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12818)

It was discovered that the MDIO bus devices subsystem in the Linux kernel improperly dropped a device reference in an error condition, leading to a use-after-free. An attacker could use this to cause a denial of service (system crash). (CVE-2019-12819)

It was discovered that a NULL pointer dereference vulnerability existed in the Near-field communication (NFC) implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-12984)

Jann Horn discovered a use-after-free vulnerability in the Linux kernel when accessing LDT entries in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13233)

Jann Horn discovered that the ptrace implementation in the Linux kernel did not properly record credentials in some situations. A local attacker could use this to cause a denial of service (system crash) or possibly gain administrative privileges. (CVE-2019-13272)

It was discovered that the GTCO tablet input driver in the Linux kernel did not properly bounds check the initial HID report sent by the device. A physically proximate attacker could use to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-13631)

It was discovered that the floppy driver in the Linux kernel did not properly validate meta data, leading to a buffer overread. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14283)

It was discovered that the floppy driver in the Linux kernel did not properly validate ioctl() calls, leading to a division-by-zero. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-14284)

Tuba Yavuz discovered that a race condition existed in the DesignWare USB3 DRD Controller device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-14763)

It was discovered that an out-of-bounds read existed in the QLogic QEDI iSCSI Initiator Driver in the Linux kernel. A local attacker could possibly use this to expose sensitive information (kernel memory). (CVE-2019-15090)

It was discovered that the Raremono AM/FM/SW radio device driver in the Linux kernel did not properly allocate memory, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service or possibly execute arbitrary code. (CVE-2019-15211)

It was discovered at a double-free error existed in the USB Rio 500 device driver for the Linux kernel. A physically proximate attacker could use this to cause a denial of service. (CVE-2019-15212)

It was discovered that a race condition existed in the Advanced Linux Sound Architecture (ALSA) subsystem of the Linux kernel, leading to a potential use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) pro possibly execute arbitrary code. (CVE-2019-15214)

It was discovered that a race condition existed in the CPiA2 video4linux device driver for the Linux kernel, leading to a use-after-free. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-15215)

It was discovered that a race condition existed in the Softmac USB Prism54 device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15220)

It was discovered that a use-after-free vulnerability existed in the Appletalk implementation in the Linux kernel if an error occurs during initialization. A local attacker could use this to cause a denial of service (system crash). (CVE-2019-15292)

It was discovered that the Empia EM28xx DVB USB device driver implementation in the Linux kernel contained a use-after-free vulnerability when disconnecting the device. An attacker could use this to cause a denial of service (system crash). (CVE-2019-2024)

It was discovered that the USB video device class implementation in the Linux kernel did not properly validate control bits, resulting in an out of bounds buffer read. A local attacker could use this to possibly expose sensitive information (kernel memory). (CVE-2019-2101)

It was discovered that the Marvell Wireless LAN device driver in the Linux kernel did not properly validate the BSS descriptor. A local attacker could possibly use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2019-3846)

Jason Wang discovered that an infinite loop vulnerability existed in the virtio net driver in the Linux kernel. A local attacker in a guest VM could possibly use this to cause a denial of service in the host system. (CVE-2019-3900)

Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen discovered that the Bluetooth protocol BR/EDR specification did not properly require sufficiently strong encryption key lengths. A physicall proximate attacker could use this to expose sensitive information. (CVE-2019-9506)

It was discovered that the Appletalk IP encapsulation driver in the Linux kernel did not properly prevent kernel addresses from being copied to user space. A local attacker with the CAP_NET_ADMIN capability could use this to expose sensitive information. (CVE-2018-20511)

It was discovered that a race condition existed in the USB YUREX device driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15216)

It was discovered that the Siano USB MDTV receiver device driver in the Linux kernel made improper assumptions about the device characteristics. A physically proximate attacker could use this cause a denial of service (system crash). (CVE-2019-15218)

It was discovered that the Line 6 POD USB device driver in the Linux kernel did not properly validate data size information from the device. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2019-15221)

Muyu Yu discovered that the CAN implementation in the Linux kernel in some situations did not properly restrict the field size when processing outgoing frames. A local attacker with CAP_NET_ADMIN privileges could use this to execute arbitrary code. (CVE-2019-3701)

Vladis Dronov discovered that the debug interface for the Linux kernel’s HID subsystem did not properly validate passed parameters in some situations. A local privileged attacker could use this to cause a denial of service (infinite loop). (CVE-2019-3819)

Update instructions

The problem can be corrected by updating your system to the following package versions:

Ubuntu 18.04 LTS
linux-image-4.15.0-1047-aws - 4.15.0-1047.49
linux-image-aws - 4.15.0.1047.46
Ubuntu 16.04 LTS
linux-image-4.15.0-1047-aws - 4.15.0-1047.49~16.04.1
linux-image-aws-hwe - 4.15.0.1047.47

To update your system, please follow these instructions: https://wiki.ubuntu.com/Security/Upgrades.

After a standard system update you need to reboot your computer to make all the necessary changes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have been given a new version number, which requires you to recompile and reinstall all third party kernel modules you might have installed. Unless you manually uninstalled the standard kernel metapackages (e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual, linux-powerpc), a standard system upgrade will automatically perform this as well.

References

...

➥ Externe Webseite mit kompletten Inhalt öffnen

Kommentiere zu USN-4118-1: Linux kernel (AWS) vulnerabilities






➤ Ähnliche Beiträge

  • 1.

    USN-4041-1: Linux kernel update

    vom 576.36 Punkte ic_school_black_18dp
    linux, linux-aws, linux-aws-hwe, linux-azure, linux-gcp, linux-gke-4.15, linux-hwe, linux-kvm, linux-oem, linux-oracle, linux-raspi2, linux-snapdragon update A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 19.04 Ubuntu 18.10 Ubun
  • 2.

    USN-4017-1: Linux kernel vulnerabilities

    vom 535.91 Punkte ic_school_black_18dp
    linux, linux-aws, linux-aws-hwe, linux-azure, linux-gcp, linux-hwe, linux-kvm, linux-oem, linux-oracle, linux-raspi2, linux-snapdragon vulnerabilities A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 19.04 Ubuntu 18.10 Ubun
  • 3.

    USN-4135-1: Linux kernel vulnerabilities

    vom 513.69 Punkte ic_school_black_18dp
    linux, linux-aws, linux-aws-hwe, linux-azure, linux-gcp, linux-gke-4.15, linux-gke-5.0, linux-hwe, linux-kvm, linux-oem, linux-oracle, linux-raspi2, linux-snapdragon vulnerabilities A security issue affects these releases of Ubuntu and its derivatives
  • 4.

    Terraform AWS Secure Baseline - Terraform Module To Set Up Your AWS Account With The Secure Baseline Configuration Based On CIS Amazon Web Services Foundations

    vom 507.14 Punkte ic_school_black_18dp
    Terraform Module RegistryA terraform module to set up your AWS account with the reasonably secure configuration baseline. Most configurations are based on CIS Amazon Web Services Foundations v1.2.0.See Benchmark Compliance to check which items in C
  • 5.

    USN-4115-2: Linux kernel regression

    vom 449.6 Punkte ic_school_black_18dp
    linux, linux-aws, linux-aws-hwe, linux-azure, linux-gcp, linux-gke-4.15, linux-hwe, linux-kvm, linux-oracle, linux-raspi2 regression A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 18.04 LTS Ubuntu 16.04 LTS Summary USN 4115-1 i
  • 6.

    USN-4118-1: Linux kernel (AWS) vulnerabilities

    vom 399.31 Punkte ic_school_black_18dp
    linux-aws vulnerabilities A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 18.04 LTS Ubuntu 16.04 LTS Summary Several security issues were fixed in the Linux kernel. Software Description linux-aws - Linux kernel for Amazon Web Services
  • 7.

    USN-4162-1: Linux kernel vulnerabilities

    vom 334.92 Punkte ic_school_black_18dp
    linux, linux-aws, linux-aws-hwe, linux-azure, linux-gcp, linux-gke-4.15, linux-hwe, linux-kvm, linux-oem, linux-oracle, linux-raspi2, linux-snapdragon vulnerabilities A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 18.04 LTS Ubuntu 16.04
  • 8.

    USN-3619-1: Linux kernel vulnerabilities

    vom 328.14 Punkte ic_school_black_18dp
    linux, linux-aws, linux-kvm, linux-raspi2, linux-snapdragon vulnerabilities A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 16.04 LTS Summary Several security issues were fixed in the Linux kernel. Software Description l
  • 9.

    USN-4185-1: Linux kernel vulnerabilities

    vom 319.54 Punkte ic_school_black_18dp
    linux, linux-aws, linux-aws-hwe, linux-azure, linux-gcp, linux-gke-4.15, linux-hwe, linux-kvm, linux-oem, linux-oracle vulnerabilities A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 18.04 LTS Ubuntu 16.04 LTS Summary Several secur
  • 10.

    USN-3256-1: Linux kernel vulnerability

    vom 305.95 Punkte ic_school_black_18dp
    Ubuntu Security Notice USN-3256-1 4th April, 2017 linux, linux-aws, linux-gke, linux-raspi2, linux-snapdragon, linux-ti-omap4 vulnerability A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 16.10 Ubuntu 16.04 LTS Ubuntu 14.04 LT
  • 11.

    USN-4115-1: Linux kernel vulnerabilities

    vom 286.84 Punkte ic_school_black_18dp
    linux, linux-azure, linux-gcp, linux-gke-4.15, linux-hwe, linux-kvm, linux-oracle, linux-raspi2 vulnerabilities A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 18.04 LTS Ubuntu 16.04 LTS Summary Several security issues were fixed in the Linux kernel. Softw
  • 12.

    USN-4094-1: Linux kernel vulnerabilities

    vom 282.47 Punkte ic_school_black_18dp
    linux, linux-hwe, linux-azure, linux-gcp, linux-gke-4.15, linux-kvm, linux-oem, linux-oracle, linux-raspi2, linux-snapdragon vulnerabilities A security issue affects these releases of Ubuntu and its derivatives: Ubuntu 18.04 LTS Ubuntu 16.04 LTS S