Cookie Consent by Free Privacy Policy Generator ๐Ÿ“Œ Building NLP chatbots with PyTorch

๐Ÿ  Team IT Security News

TSecurity.de ist eine Online-Plattform, die sich auf die Bereitstellung von Informationen,alle 15 Minuten neuste Nachrichten, Bildungsressourcen und Dienstleistungen rund um das Thema IT-Sicherheit spezialisiert hat.
Ob es sich um aktuelle Nachrichten, Fachartikel, Blogbeitrรคge, Webinare, Tutorials, oder Tipps & Tricks handelt, TSecurity.de bietet seinen Nutzern einen umfassenden รœberblick รผber die wichtigsten Aspekte der IT-Sicherheit in einer sich stรคndig verรคndernden digitalen Welt.

16.12.2023 - TIP: Wer den Cookie Consent Banner akzeptiert, kann z.B. von Englisch nach Deutsch รผbersetzen, erst Englisch auswรคhlen dann wieder Deutsch!

Google Android Playstore Download Button fรผr Team IT Security



๐Ÿ“š Building NLP chatbots with PyTorch


๐Ÿ’ก Newskategorie: Programmierung
๐Ÿ”— Quelle: dev.to

Chatbots provide automated conversations that can assist users with tasks or information-seeking. With recent advances in deep learning, chatbots are becoming more conversational and useful.

This comprehensive tutorial will leverage PyTorch and Python to build a chatbot from scratch, covering model architecture, data preparation, training loops, evaluation, and deployment.

Check out Natural Language Processing (NLP) in JavaScript (series)

Setting up the Python Environment

We first need an environment to run our chatbot code. This guide uses Python 3.8 and PyTorch 1.12:

# Create conda env 
conda create -n chatbot python=3.8
conda activate chatbot

# Install PyTorch 
pip install torch==1.12.0+cpu torchvision==0.13.0+cpu torchaudio===0.12.0 -f https://download.pytorch.org/whl/torch_stable.html

# Check installs 
python -c "import torch; print(torch.__version__)"

This gives us the latest PyTorch version for our machine-learning work.

Chatbot Model Architecture

The model architecture defines the data flows and computations that produce chatbot responses. We will use an LSTM-based encoder-decoder architecture common for sequence-to-sequence tasks.

The encoder maps an input statement (e.g., "What's the weather forecast?") into a fixed-length vector representation. The decoder maps this representation to a natural language response (e.g., "The weather will be sunny and 25 degrees Celsius today").

import torch
import torch.nn as nn

class EncoderLSTM(nn.Module):
    def __init__(self, input_size, hidden_size):
        super().__init__()  
        self.lstm = nn.LSTM(input_size, hidden_size)

    def forward(self, input):
        _, (hidden, cell) = self.lstm(input)  
        return hidden, cell

class DecoderLSTM(nn.Module): 
    def __init__(self, input_size, hidden_size):
        super().__init__()
        self.lstm = nn.LSTM(input_size, hidden_size)

    def forward(self, input):
        outputs, _ = self.lstm(input)
        return outputs

class Seq2Seq(nn.Module):
    def __init__(self, encoder, decoder): 
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder

We instantiate the encoder and decoder and combine them into a Seq2Seq model. We'll train this end-to-end.

Preparing Training Data

We need a dataset of dialog examples to train our model. After importing a dataset, we tokenize the text into integer sequences:

Kaggle hosts dialog corpora like the Ubuntu Dialog Corpus, Sentence Paraphrase Collection, and Daily Dialog Dataset, which offer 100k+ conversational exchanges. These are free to download and use.

data = load_dataset("daily_dialog")

def tokenize(text):
    return [vocab[token] for token in text.split(" ")] 

vocab = {"hello": 1, "what": 2, "is": 3, ...}
tokenized_data = data.map(tokenize)

We can split this into training and validation sets:

from sklearn.model_selection import train_test_split

train_data, val_data = train_test_split(tokenized_data)

Training Loop

With data ready, we define our model, loss criterion, and optimizer, then loop through examples:

embed_size = 128
hidden_size = 512
model = Seq2Seq(encoder=EncoderLSTM(embed_size, hidden_size),
                decoder=DecoderLSTM(embed_size, hidden_size))

criterion = nn.NLLLoss()
optimizer = torch.optim.Adam(model.parameters())

for epoch in range(10):
    for input, target in train_data:
       output = model(input)  
       loss = criterion(output, target)
       loss.backward()  
       optimizer.step()
       optimizer.zero_grad() 

By computing loss and backpropagating repeatedly, our model learns generation logic.

Model Evaluation

We evaluate our trained chatbot on validation data using metrics like perplexity and BLEU score:

from transformers import GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
scores = evaluate(model, val_data, tokenizer)  

print(f"Perplexity score: {scores['perplexity']}")
print(f"BLEU score: {scores['bleu']}")  

These measures check how fluent, sensible, and accurate model generations are.

Deployment

Once we have a performant model, we package it into an API using FastAPI:

import fastapi

app = fastapi.FastAPI()

@app.post("/chat")
def chat(input: str):
    input = tokenize(input) 
    output = model(input)
    return {"bot": output}

The API takes an input text, feeds it to our model to generate a bot response, and returns the prediction.

Conclusion

And with that, we have a fully capable deep-learning chatbot in Python ready to respond to messages and hold conversations! We learned how to sequence models like LSTMs excel at text data, walked through training chatbot models in PyTorch, and saw how to optimize, improve, and deploy our creation.

There's so much more that can be done, like adding personalization, linking API data sources for fresh facts, integrating translation capabilities, and more - a chatbot's work is never done! I enjoyed guiding you through this tutorial and hope you'll use these new skills to build your smart chat apps.

Frequently Asked Questions

Why is PyTorch better for chatbots vs TensorFlow or other libraries?
I wouldn't say it's necessarily better outright, but PyTorch's eager execution (computing on the fly rather than static graphs) can make iteration and debugging easier. All the major frameworks have their strengths. Pick the one you like working with!

How much data do I need to train a good chatbot?
There's no hard threshold, but generally, the more conversational data, the better. Hundreds of thousands to millions of dialog examples are not unrealistic for producing human-like responses. Leveraging pre-trained language model checkpoints helps, too.

What kind of hardware compute power is needed? Can I run complex models locally or on my laptop?
GPU acceleration is recommended for good performance for all but the most basic prototypes. Cloud services offer GPU and even quantum-accelerated training if you don't have serious hardware! But start experimenting locally and scale up later.

Beyond chatbots, what other NLP applications could I explore with PyTorch?
Tons! Text classification, semantic search, grammar correction, predictive typing, document summarization, language translation...the sky's the limit! PyTorch has awesome text support and an active developer community.

If you like our work and want to help us continue dropping content like this, buy us a cup of coffee.

If you find this post exciting, find more exciting posts on Learnhub Blog; we write everything tech from Cloud computing to Frontend Dev, Cybersecurity, AI, and Blockchain.

Resource

...



๐Ÿ“Œ Building NLP chatbots with PyTorch


๐Ÿ“ˆ 54.85 Punkte

๐Ÿ“Œ http://web.nlp.gov.ph/nlp/m.txt


๐Ÿ“ˆ 35.69 Punkte

๐Ÿ“Œ Long Short-Term Memory for NLP (NLP Zero to Hero - Part 5)


๐Ÿ“ˆ 35.69 Punkte

๐Ÿ“Œ NuMind Launches NLP Tool Leveraging LLMs to Democratize Creation of Custom NLP Models


๐Ÿ“ˆ 35.69 Punkte

๐Ÿ“Œ A Deep Dive into NLP with PyTorch


๐Ÿ“ˆ 33.3 Punkte

๐Ÿ“Œ Learn You a PyTorch! (aka Introduction Into PyTorch)


๐Ÿ“ˆ 30.91 Punkte

๐Ÿ“Œ PyTorch on Azure: Full support for PyTorch 1.2


๐Ÿ“ˆ 30.91 Punkte

๐Ÿ“Œ PyTorch Lightning 1.0: PyTorch, nur schneller und flexibler


๐Ÿ“ˆ 30.91 Punkte

๐Ÿ“Œ Pytorch: Microsoft startet neuen Azure-Service Pytorch Enterprise


๐Ÿ“ˆ 30.91 Punkte

๐Ÿ“Œ Designprinzipien fรผr Chatbots: Erfolgreiches Design von Chatbots


๐Ÿ“ˆ 27.32 Punkte

๐Ÿ“Œ Designprinzipien fรผr Chatbots: Erfolgreiches Design von Chatbots


๐Ÿ“ˆ 27.32 Punkte

๐Ÿ“Œ Designprinzipien fรผr Chatbots: Erfolgreiches Design von Chatbots


๐Ÿ“ˆ 27.32 Punkte

๐Ÿ“Œ (g+) GPT Store: Gute Chatbots, schlechte Chatbots


๐Ÿ“ˆ 27.32 Punkte

๐Ÿ“Œ Chatbots, DSA, Pressefreiheit - Gewalt gegen Chatbots, Lobbyschlacht um DSA, Pressefreiheit in Ghana (Sendung)


๐Ÿ“ˆ 27.32 Punkte

๐Ÿ“Œ Jailbroken AI Chatbots Can Jailbreak Other Chatbots


๐Ÿ“ˆ 27.32 Punkte

๐Ÿ“Œ From text to dream job: Building an NLP-based job recommender at Talent.com with Amazon SageMaker


๐Ÿ“ˆ 25.74 Punkte

๐Ÿ“Œ Elevating Conversations with P2P Clouds: Building a TensorFlow-Powered NLP Chatbot


๐Ÿ“ˆ 25.74 Punkte

๐Ÿ“Œ Intro to PyTorch Tutorial: Building fashion recognizer


๐Ÿ“ˆ 23.35 Punkte

๐Ÿ“Œ Intro to PyTorch Tutorial: Building fashion recognizer | AI Show


๐Ÿ“ˆ 23.35 Punkte

๐Ÿ“Œ Building a Logistic Regression Classifier in PyTorch


๐Ÿ“ˆ 23.35 Punkte

๐Ÿ“Œ Building an Image Classifier with a Single-Layer Neural Network in PyTorch


๐Ÿ“ˆ 23.35 Punkte

๐Ÿ“Œ Building a Convolutional Neural Network in PyTorch


๐Ÿ“ˆ 23.35 Punkte

๐Ÿ“Œ Building AI chatbots using Amazon Lex and Amazon Kendra for filtering query results based on user context


๐Ÿ“ˆ 21.55 Punkte

๐Ÿ“Œ Building Intelligent Chatbots With Streamlit, OpenAI, and Elasticsearch


๐Ÿ“ˆ 21.55 Punkte

๐Ÿ“Œ Building Local RAG Chatbots Without Coding Using LangFlow and Ollama


๐Ÿ“ˆ 21.55 Punkte

๐Ÿ“Œ Top 5 AI Chatbot Platforms: Your Guide to Building Chatbots with Ease


๐Ÿ“ˆ 21.55 Punkte

๐Ÿ“Œ Machine Learning: Facebook gibt NLP-Library PyText als Open Source frei


๐Ÿ“ˆ 17.84 Punkte

๐Ÿ“Œ Machine Learning: Facebook gibt NLP-Library PyText als Open Source frei


๐Ÿ“ˆ 17.84 Punkte

๐Ÿ“Œ ML Kit expands into NLP with Language Identification and Smart Reply


๐Ÿ“ˆ 17.84 Punkte

๐Ÿ“Œ Deep Learning 6: Deep Learning for NLP


๐Ÿ“ˆ 17.84 Punkte

๐Ÿ“Œ DEF CON 27 Packet Hacking Village- Utku Sen - Personalized Wordlists With NLP by Analyzing Tweets


๐Ÿ“ˆ 17.84 Punkte

๐Ÿ“Œ Transfer Learning: Entering a New Era in NLP || Malte Pietsch


๐Ÿ“ˆ 17.84 Punkte

๐Ÿ“Œ Microsoft verschiebt die NLP-Grenzen: Modelle bis zu 100 Milliarden Parametern


๐Ÿ“ˆ 17.84 Punkte

๐Ÿ“Œ Sequencing - Turning sentence into data (NLP Zero to Hero, part 2)


๐Ÿ“ˆ 17.84 Punkte

๐Ÿ“Œ Training a model to recognize sentiment in text (NLP Zero to Hero, part 3)


๐Ÿ“ˆ 17.84 Punkte











matomo